CyberSource Simple Order API Client

Developer Guide

September 2015
CyberSource Contact Information

For general information about our company, products, and services, go to

For sales questions about any CyberSource Service, email sales@cybersource.com or
call 650-432-7350 or 888-330-2300 (toll free in the United States).

For support information about any CyberSource Service, visit the Support Center at
http://www.cybersource.com/support.

Copyright

© 2015 CyberSource Corporation. All rights reserved. CyberSource Corporation ("CyberSource") furnishes this
document and the software described in this document under the applicable agreement between the reader of
this document ("You") and CyberSource ("Agreement"). You may use this document and/or software only in
accordance with the terms of the Agreement. Except as expressly set forth in the Agreement, the information
contained in this document is subject to change without notice and therefore should not be interpreted in any way
as a guarantee or warranty by CyberSource. CyberSource assumes no responsibility or liability for any errors
that may appear in this document. The copyrighted software that accompanies this document is licensed to You
for use only in strict accordance with the Agreement. You should read the Agreement carefully before using the
software. Except as permitted by the Agreement, You may not reproduce any part of this document, store this
document in a retrieval system, or transmit this document, in any form or by any means, electronic, mechanical,
recording, or otherwise, without the prior written consent of CyberSource.

Restricted Rights Legends

For Government or defense agencies. Use, duplication, or disclosure by the Government or defense agencies
is subject to restrictions as set forth the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 and in similar clauses in the FAR and NASA FAR Supplement.

For civilian agencies. Use, reproduction, or disclosure is subject to restrictions set forth in subparagraphs (a)
through (d) of the Commercial Computer Software Restricted Rights clause at 52.227-19 and the limitations set
forth in CyberSource Corporation's standard commercial agreement for this software. Unpublished rights
reserved under the copyright laws of the United States.

Trademarks

CyberSource, The Power of Payment, CyberSource Payment Manager, CyberSource Risk Manager,
CyberSource Decision Manager, CyberSource Connect, Authorize.Net, and eCheck.net are trademarks and/or
service marks of CyberSource Corporation. All other brands and product names are trademarks or registered
trademarks of their respective owners.
Contents

Recent Revisions to This Document 18

About This Guide 19
- Audience 19
- Purpose 19
- Scope 20
- Conventions 20
 - Note, Important, and Warning Statements 20
 - Text and Command Conventions 20
- Related Documents 21
 - Client Package Documentation 21
 - CyberSource Services Documentation 21
- Customer Support 22

Chapter 1 Introduction 23

Chapter 2 ASP Client 24
- Using ASP in a Hosted Environment 24
- Choosing Your API and Client 25
 - API Variation 25
 - Client Versions 25
- Sample Code 25
 - Basic ASP Page Example 26
 - Sample Scripts 27
 - Sample ASP Pages 27
- Installing and Testing the Client 28
 - Minimum System Requirements 28
 - Transaction Security Keys 29
 - Installing the Client 29
 - Testing the Client 30
 - Going Live 31
Contents

CyberSource Essentials Merchants 31
CyberSource Advanced Merchants 32
Deploying the Client to Another Computer 32
Updating the Client to Use a Later API Version 33

Client Objects 34
MerchantConfig 34
 MerchantConfig Properties 34
 Using Alternate Server Properties 37
 MerchantConfig Method 37
ProxyConfig 38
 ProxyConfig Properties 38
 ProxyConfig Method 39
Hashtable 40
 Hashtable Properties 40
 Hashtable Method 41
Logger 42
 Logger Properties 42
 Logger Methods 43
Fault 44
Client 45
 RunTransaction 45

Using Name-Value Pairs 48
Requesting CyberSource Services 48
Creating and Sending Requests 48
 Creating the MerchantConfig Object 49
 Creating an Empty Request Hashtable 49
 Adding the Merchant ID 49
 Adding Services to the Request Hashtable 49
 Requesting a Sale 49
 Adding Service-Specific Fields to the Request Hashtable 50
 Sending the Request 50
Interpreting Replies 50
 Handling the Return Status 50
 Processing the Reason Codes 53
 Handling Decision Manager Reviews 55
Requesting Multiple Services 56
Retrying When System Errors Occur 57

Using XML 58
Requesting CyberSource Services 58
Sample Code 58
Creating a Request Document 59
 Creating an Empty Request 59
 Adding the Merchant ID 60
 Adding Services to the Request 60
Contents

- Requesting a Sale 60
- Adding Service-Specific Fields to the Request 61

Sending Requests 61
- Creating the MerchantConfig Object 61
- Reading the XML Document 62
- Sending the Request 62

Interpreting Replies 63
- Handling the Return Status 63
- Processing the Reason Codes 65
- Handling Decision Manager Reviews 67

- Requesting Multiple Services 68
- Retrying When System Errors Occur 69

Chapter 3 C/C++ Client 70

- Choosing Your API and Client 70
 - API Variation 70
 - Client Versions 70
- Sample Code 71
 - Basic C/C++ Page Example 71
- Installing and Testing the Client 73
 - Minimum System Requirements 73
 - For Linux 73
 - For Windows 73
- Transaction Security Keys 74
- Installing the Client 74
- Configuring Client Settings 75
- Testing the Client 77
- Going Live 79
 - CyberSource Essentials Merchants 79
 - CyberSource Advanced Merchants 79
- Updating the Client to Use a Later API Version 80

- C/C++ API for the Client 80
 - CybsMap Structure 80
 - Available Functions 80
 - cybs_load_config() 81
 - cybs_create_map() 81
 - cybs_destroy_map() 81
 - cybs_set_add_behavior() 82
 - cybs_get() 83
 - cybs_get_first() 83
 - cybs_get_next() 84
 - cybs_get_count() 84
 - cybs_create_map_string() 84
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cybs_destroy_map_string()</td>
<td>85</td>
</tr>
<tr>
<td>cybs_run_transaction()</td>
<td>85</td>
</tr>
<tr>
<td>Using Name-Value Pairs</td>
<td>90</td>
</tr>
<tr>
<td>Requesting CyberSource Services</td>
<td>90</td>
</tr>
<tr>
<td>Sample Code</td>
<td>90</td>
</tr>
<tr>
<td>Creating and Sending Requests</td>
<td>91</td>
</tr>
<tr>
<td>Adding the Use Statement</td>
<td>91</td>
</tr>
<tr>
<td>Loading the Configuration Settings</td>
<td>91</td>
</tr>
<tr>
<td>Creating the Empty Request and Reply</td>
<td>91</td>
</tr>
<tr>
<td>Adding the Merchant ID</td>
<td>91</td>
</tr>
<tr>
<td>Adding Services to the Request Structure</td>
<td>92</td>
</tr>
<tr>
<td>Requesting a Sale</td>
<td>92</td>
</tr>
<tr>
<td>Adding Service-Specific Fields to the Request</td>
<td>92</td>
</tr>
<tr>
<td>Sending the Request</td>
<td>92</td>
</tr>
<tr>
<td>Interpreting Replies</td>
<td>93</td>
</tr>
<tr>
<td>Handling the Return Status</td>
<td>93</td>
</tr>
<tr>
<td>Processing the Reason Codes</td>
<td>96</td>
</tr>
<tr>
<td>Handling Decision Manager Reviews</td>
<td>98</td>
</tr>
<tr>
<td>Requesting Multiple Services</td>
<td>99</td>
</tr>
<tr>
<td>Retrying When System Errors Occur</td>
<td>99</td>
</tr>
<tr>
<td>Using XML</td>
<td>100</td>
</tr>
<tr>
<td>Requesting CyberSource Services</td>
<td>100</td>
</tr>
<tr>
<td>Sample Code</td>
<td>101</td>
</tr>
<tr>
<td>Creating a Request Document</td>
<td>101</td>
</tr>
<tr>
<td>Creating an Empty Request</td>
<td>102</td>
</tr>
<tr>
<td>Adding the Merchant ID</td>
<td>102</td>
</tr>
<tr>
<td>Adding Services to the Request</td>
<td>102</td>
</tr>
<tr>
<td>Requesting a Sale</td>
<td>103</td>
</tr>
<tr>
<td>Adding Service-Specific Fields to the Request</td>
<td>103</td>
</tr>
<tr>
<td>Sending Requests</td>
<td>104</td>
</tr>
<tr>
<td>Adding the Use Statement</td>
<td>104</td>
</tr>
<tr>
<td>Loading the Configuration Settings</td>
<td>104</td>
</tr>
<tr>
<td>Creating the Empty Request and Reply</td>
<td>104</td>
</tr>
<tr>
<td>Reading the XML Document</td>
<td>105</td>
</tr>
<tr>
<td>Sending the Request</td>
<td>105</td>
</tr>
<tr>
<td>Interpreting Replies</td>
<td>105</td>
</tr>
<tr>
<td>Handling the Return Status</td>
<td>105</td>
</tr>
<tr>
<td>Processing the Reason Codes</td>
<td>109</td>
</tr>
<tr>
<td>Handling Decision Manager Reviews</td>
<td>111</td>
</tr>
<tr>
<td>Requesting Multiple Services</td>
<td>112</td>
</tr>
<tr>
<td>Retrying When System Errors Occur</td>
<td>113</td>
</tr>
<tr>
<td>Advanced Configuration Information</td>
<td>114</td>
</tr>
<tr>
<td>Using Alternate Server Configuration Settings</td>
<td>114</td>
</tr>
<tr>
<td>Configuring for Multiple Merchant IDs</td>
<td>115</td>
</tr>
</tbody>
</table>
Contents

Chapter 4 .NET 1.1 Client 116

- Choosing an API Variation 116
- A Note about the API and Client Versions 117
- Basic C# Program Example 118
- Installing and Testing the Client 119
 - Minimum System Requirements 119
 - Transaction Security Keys 120
 - Installing the Client 120
 - Upgrading from a Previous Version 121
 - Using the Test Applications 122
 - Configuring the Test Applications 123
 - Configuring Your Settings for Multiple Merchants 125
 - Running the Test Applications 126
 - Deploying the Client to Another Computer 126
 - Going Live 127
 - CyberSource Essentials Merchants 127
 - CyberSource Advanced Merchants 127
 - Updating the Client to Use a Later API Version 128
 - Name-Value Pair and SOAP Client Variations 128
 - XML Client 129
- Using Name-Value Pairs 129
 - Requesting CyberSource Services 129
 - Sample Code 129
 - Creating and Sending the Request 130
 - Creating a New Visual Studio .NET Project 130
 - Importing the Client Classes 130
 - Creating an Empty Request 130
 - Adding the Merchant ID 130
 - Adding Services to the Request 131
 - Requesting a Sale 131
 - Adding Service-Specific Fields to the Request 131
 - Sending the Request 132
 - Interpreting the Reply 133
 - Using the Decision and Reason Code 135
 - For CyberSource Advanced Merchants: Handling Decision Manager Reviews 137
 - Requesting Multiple Services 138
 - Retrying When System Errors Occur 139
 - Creating an Application Settings File 139
- Using XML 140
 - Requesting CyberSource Services 140
 - Creating a Request Document 140
 - Creating an Empty Request 141
Requesting CyberSource Services 239
Creating a Request Document 240
 Creating an Empty Request 240
 Adding the Merchant ID 241
 Adding Services to the Request 241
 Requesting a Sale 241
 Adding Service-Specific Fields to the Request 242
Sending the Request 242
 Creating a New Visual Studio .NET Project 242
 Importing the Client Classes 243
 Sending the Request 243
Interpreting the Reply 244
 Using the Decision and Reason Code 246
 For CyberSource Advanced Merchants: Handling Decision Manager Reviews 248
Requesting Multiple Services 249
Retrying When System Errors Occur 250
Creating an Application Settings File 250
Using SOAP 251
 Requesting CyberSource Services 251
 Creating and Sending the Request 251
 Creating a New Visual Studio .NET Project 251
 Importing the Client Classes 252
 Creating an Empty Request 252
 Adding the Merchant ID 252
 Adding Services to the Request 252
 Requesting a Sale 252
 Adding Service-Specific Fields to the Request 253
 Sending the Request 254
 Interpreting the Reply 255
 Using the Decision and Reason Code 256
 For CyberSource Advanced Merchants: Handling Decision Manager Reviews 258
 Requesting Multiple Services 259
 Retrying When System Errors Occur 260
 Creating an Application Settings File 260
Setting the Connection Limit 261
 Examples 261
 References 262
Sample ASP.NET Code Using Visual Basic 263
Chapter 7 Java Client 267

Choosing Your API and Client 267
 API Variations 267
 Client Versions 268

Sample Code 268
 Basic Java Program Example 269

Installing and Testing the Client 270
 Minimum System Requirements 270
 Transaction Security Keys 271
 Installing the Client 272
 Configuring Client Properties 272
 Testing the Client 275
 Going Live 276
 CyberSource Essentials Merchants 276
 CyberSource Advanced Merchants 276

Using Name-Value Pairs 277
 Requesting CyberSource Services 277
 Creating and Sending Requests 278
 Importing the Client Classes 278
 Loading the Configuration File 278
 Creating an Empty Request 278
 Adding Services to the Request 278
 Adding Service-Specific Fields to the Request 279
 Sending the Request 280

Interpreting Replies 280
 Using the Decision and Reason Code Fields 282
 Handling Decision Manager Reviews (CyberSource Advanced Services Only) 284

Using XML 286
 Requesting CyberSource Services 286
 Creating Requests 287
 Creating an Empty Request 287
 Adding Services to the Request 288
 Adding Service-Specific Fields to the Request 289
 Sending Requests 289
 Importing the Client Classes 289
 Loading the Configuration File 290
 Sending the Request 290

Interpreting Replies 291
 Using the Decision and Reason Code 292
 Handling Decision Manager Reviews (CyberSource Advanced Merchants) 294
 Handling System Errors 294

Advanced Configuration Information 296
Chapter 8 Perl Client 300

- Using Perl in a Hosted Environment 300
- Choosing Your API and Client 301
 - API Variation 301
 - Client Versions 301
- Sample Code 302
 - Basic Perl Page Example 302
 - Sample Scripts 303
 - Sample Store 303
- Installing and Testing the Client 305
 - Minimum System Requirements 305
 - Transaction Security Keys 306
 - Installing the Client 306
 - Configuring Client Settings 309
 - Testing the Client 311
- Going Live 313
 - CyberSource Essentials Merchants 313
 - CyberSource Advanced Merchants 313
- Updating the Client to Use a Later API Version 314
- Perl API for the Client 314
 - Summary of Functions 314
 - cybs_load_config() 314
 - cybs_run_transaction() 315
 - Reply Key Descriptions 316
 - Possible Return Status Values 316
- Using Name-Value Pairs 321
- Requesting CyberSource Services 321
- Creating and Sending Requests 321
 - Adding the Use Statement 321
 - Loading the Configuration Settings 322
 - Creating an Empty Request Hash 322
 - Adding the Merchant ID 322
 - Adding Services to the Request Hash 322
 - Requesting a Sale 322
 - Adding Service-Specific Fields to the Request Hash 323
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sending the Request</td>
<td>323</td>
</tr>
<tr>
<td>Interpreting Replies</td>
<td>324</td>
</tr>
<tr>
<td>Handling the Return Status</td>
<td>324</td>
</tr>
<tr>
<td>Processing the Reason Codes</td>
<td>326</td>
</tr>
<tr>
<td>Handling Decision Manager Reviews</td>
<td>328</td>
</tr>
<tr>
<td>Requesting Multiple Services</td>
<td>329</td>
</tr>
<tr>
<td>Retrying When System Errors Occur</td>
<td>330</td>
</tr>
<tr>
<td>Using XML</td>
<td>331</td>
</tr>
<tr>
<td>Requesting CyberSource Services</td>
<td>331</td>
</tr>
<tr>
<td>Sample Code</td>
<td>331</td>
</tr>
<tr>
<td>Creating a Request Document</td>
<td>332</td>
</tr>
<tr>
<td>Creating an Empty Request</td>
<td>332</td>
</tr>
<tr>
<td>Adding the Merchant ID</td>
<td>333</td>
</tr>
<tr>
<td>Adding Services to the Request</td>
<td>333</td>
</tr>
<tr>
<td>Requesting a Sale</td>
<td>333</td>
</tr>
<tr>
<td>Adding Service-Specific Fields to the Request</td>
<td>334</td>
</tr>
<tr>
<td>Sending Requests</td>
<td>334</td>
</tr>
<tr>
<td>Sending Requests</td>
<td>334</td>
</tr>
<tr>
<td>Adding the Use Statement</td>
<td>334</td>
</tr>
<tr>
<td>Loading the Configuration Settings</td>
<td>335</td>
</tr>
<tr>
<td>Reading the XML Document</td>
<td>335</td>
</tr>
<tr>
<td>Sending the Request</td>
<td>335</td>
</tr>
<tr>
<td>Interpreting Replies</td>
<td>336</td>
</tr>
<tr>
<td>Handling the Return Status</td>
<td>336</td>
</tr>
<tr>
<td>Processing the Reason Codes</td>
<td>338</td>
</tr>
<tr>
<td>Handling Decision Manager Reviews</td>
<td>340</td>
</tr>
<tr>
<td>Requesting Multiple Services</td>
<td>341</td>
</tr>
<tr>
<td>Retrying When System Errors Occur</td>
<td>342</td>
</tr>
<tr>
<td>Advanced Configuration Information</td>
<td>343</td>
</tr>
<tr>
<td>Using Alternate Server Configuration Settings</td>
<td>343</td>
</tr>
<tr>
<td>Configuring for Multiple Merchant IDs</td>
<td>344</td>
</tr>
</tbody>
</table>

Chapter 9 **PHP Client** 345

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using PHP in a Hosted Environment</td>
<td>345</td>
</tr>
<tr>
<td>Choosing Your API and Client</td>
<td>346</td>
</tr>
<tr>
<td>API Variation</td>
<td>346</td>
</tr>
<tr>
<td>Client Versions</td>
<td>346</td>
</tr>
<tr>
<td>Sample Code</td>
<td>347</td>
</tr>
<tr>
<td>Basic PHP Page Example</td>
<td>347</td>
</tr>
<tr>
<td>Sample Scripts</td>
<td>348</td>
</tr>
<tr>
<td>Sample PHP Pages</td>
<td>348</td>
</tr>
<tr>
<td>Installing and Testing the Client</td>
<td>350</td>
</tr>
<tr>
<td>Minimum System Requirements</td>
<td>350</td>
</tr>
<tr>
<td>For Linux</td>
<td>350</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>For Windows</td>
<td>350</td>
</tr>
<tr>
<td>Transaction Security Keys</td>
<td>351</td>
</tr>
<tr>
<td>Installing the Client</td>
<td>351</td>
</tr>
<tr>
<td>Configuring Client Settings</td>
<td>354</td>
</tr>
<tr>
<td>Testing the Client</td>
<td>356</td>
</tr>
<tr>
<td>Going Live</td>
<td>358</td>
</tr>
<tr>
<td>CyberSource Essentials Merchants</td>
<td>358</td>
</tr>
<tr>
<td>CyberSource Advanced Merchants</td>
<td>358</td>
</tr>
<tr>
<td>Updating the Client to Use a Later API Version</td>
<td>359</td>
</tr>
<tr>
<td>Special Installation Instructions for Oracle Users</td>
<td>359</td>
</tr>
<tr>
<td>PHP API for the Client</td>
<td>360</td>
</tr>
<tr>
<td>Summary of Functions</td>
<td>360</td>
</tr>
<tr>
<td>cybs_load_config()</td>
<td>360</td>
</tr>
<tr>
<td>cybs_run_transaction()</td>
<td>361</td>
</tr>
<tr>
<td>Reply Key Descriptions</td>
<td>361</td>
</tr>
<tr>
<td>Possible Return Status Values</td>
<td>362</td>
</tr>
<tr>
<td>Using Name-Value Pairs</td>
<td>366</td>
</tr>
<tr>
<td>Requesting CyberSource Services</td>
<td>366</td>
</tr>
<tr>
<td>Creating and Sending the Request</td>
<td>367</td>
</tr>
<tr>
<td>Loading the Configuration Settings</td>
<td>367</td>
</tr>
<tr>
<td>Creating an Empty Request Array</td>
<td>367</td>
</tr>
<tr>
<td>Adding the Merchant ID</td>
<td>367</td>
</tr>
<tr>
<td>Adding Services to the Request Array</td>
<td>368</td>
</tr>
<tr>
<td>Requesting a Sale</td>
<td>368</td>
</tr>
<tr>
<td>Adding Service-Specific Fields to the Request Array</td>
<td>368</td>
</tr>
<tr>
<td>Sending the Request</td>
<td>368</td>
</tr>
<tr>
<td>Interpreting the Reply</td>
<td>369</td>
</tr>
<tr>
<td>Handling the Return Status</td>
<td>369</td>
</tr>
<tr>
<td>Processing the Reason Codes</td>
<td>371</td>
</tr>
<tr>
<td>Handling Decision Manager Reviews</td>
<td>373</td>
</tr>
<tr>
<td>Requesting Multiple Services</td>
<td>374</td>
</tr>
<tr>
<td>Retrying When System Errors Occur</td>
<td>375</td>
</tr>
<tr>
<td>Using XML</td>
<td>376</td>
</tr>
<tr>
<td>Requesting CyberSource Services</td>
<td>376</td>
</tr>
<tr>
<td>Sample Code</td>
<td>376</td>
</tr>
<tr>
<td>Creating a Request Document</td>
<td>377</td>
</tr>
<tr>
<td>Creating an Empty Request</td>
<td>377</td>
</tr>
<tr>
<td>Adding the Merchant ID</td>
<td>378</td>
</tr>
<tr>
<td>Adding Services to the Request</td>
<td>378</td>
</tr>
<tr>
<td>Requesting a Sale</td>
<td>378</td>
</tr>
<tr>
<td>Adding Service-Specific Fields to the Request</td>
<td>379</td>
</tr>
<tr>
<td>Sending the Request</td>
<td>379</td>
</tr>
<tr>
<td>Loading the Configuration Settings</td>
<td>379</td>
</tr>
<tr>
<td>Reading the XML Document</td>
<td>380</td>
</tr>
</tbody>
</table>
Contents

- Sending the Request 380
- Interpreting the Reply 381
 - Handling the Return Status 381
 - Processing the Reason Codes 383
 - Handling Decision Manager Reviews 385
- Requesting Multiple Services 386
- Retrying When System Errors Occur 387
- Advanced Configuration Settings 388
 - Using Alternate Server Configuration Settings 388
 - Configuring Your Settings for Multiple Merchant IDs 389

Appendix A

- Using the Client Application Fields 390

Index

- 391
Recent Revisions to This Document

<table>
<thead>
<tr>
<th>Release</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2015</td>
<td>• Updated the production server URL and the test server URL.</td>
</tr>
<tr>
<td>September 2014</td>
<td>• Added chapter to document the new .NET 4.0 client. See “.NET 4.0 Client,” page 216.</td>
</tr>
<tr>
<td>April 2013</td>
<td>• Noted that all of the Simple Order API clients except the .NET 4.0 client are supported only on 32-bit operating systems.</td>
</tr>
<tr>
<td></td>
<td>• Combined all Simple Order API client documents into this developer guide, which covers all supported programming languages.</td>
</tr>
<tr>
<td>January 2013</td>
<td>• Noted a change in transaction security key use requirements for the CyberSource production and test environments. For more information, see the “Transaction Security Keys” section in each programming language chapter:</td>
</tr>
<tr>
<td></td>
<td>• ASP client</td>
</tr>
<tr>
<td></td>
<td>• C/C++ client</td>
</tr>
<tr>
<td></td>
<td>• .NET 1.1 client</td>
</tr>
<tr>
<td></td>
<td>• .NET 2.0 client</td>
</tr>
<tr>
<td></td>
<td>• Java client</td>
</tr>
<tr>
<td></td>
<td>• Perl client</td>
</tr>
<tr>
<td></td>
<td>• PHP client</td>
</tr>
<tr>
<td></td>
<td>• Removed information about how to generate security keys and added it to Creating and Using Security Keys (PDF</td>
</tr>
</tbody>
</table>
About This Guide

Audience

This guide is written for application developers who want to use the CyberSource Simple Order API client to integrate the following CyberSource services into their order management system:

- CyberSource Essentials
- CyberSource Advanced

Using the Simple Order API client SDK requires programming skills in one of the following programming languages:

- ASP/COM
- C, C++
- Java/Cold Fusion
- .NET
- Perl
- PHP

To use these SDKs, you must write code that uses the API request and reply fields to integrate CyberSource services into your existing order management system.

Purpose

This guide describes tasks you must complete to install, test, and use the CyberSource Simple Order API client software.
Scope

This guide describes how to install, test, and use all available Simple Order API clients. It does not describe how to implement CyberSource services with the Simple Order API. For information about how to use the API to implement CyberSource services, see "Related Documents," page 21.

Conventions

Note, Important, and Warning Statements

A Note contains helpful suggestions or references to material not contained in this document.

An Important statement contains information essential to successfully completing a task or learning a concept.

A Warning contains information or instructions, which, if not heeded, can result in a security risk, irreversible loss of data, or significant cost in time or revenue or both.

Text and Command Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold</td>
<td>• Field and service names; for example: Include the ics_applications field. • Items that you are instructed to act upon; for example: Click Save.</td>
</tr>
<tr>
<td>italic</td>
<td>• Filenames and pathnames. For example: Add the filter definition and mapping to your web.xml file. • Placeholder variables for which you supply particular values.</td>
</tr>
</tbody>
</table>
About This Guide

The Simple Order API was originally referred to as the Web Services API in CyberSource documentation. References to the Web Services API may still appear in some locations.

Related Documents

Client Package Documentation
The following documentation is available in the client package download:

- README file
- CHANGES file
- Sample code files

CyberSource Services Documentation
This guide (Simple Order API Client Developer Guide) contains information about how to:

- Create the request
- Send the request
- Receive the reply

In contrast, CyberSource services documentation listed in Table 1 contains information about how to:

- Determine what to put in requests sent to CyberSource.
- Interpret what is contained in the reply from CyberSource.

Each type of CyberSource service has associated documentation:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>monospace</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XML elements.</td>
</tr>
<tr>
<td></td>
<td>Code examples and samples.</td>
</tr>
<tr>
<td></td>
<td>Text that you enter in an API environment; for example: Set the davService_run field to true.</td>
</tr>
</tbody>
</table>

Important
If you use other CyberSource services, the documentation can be found on the CyberSource Essentials or CyberSource Advanced (Global Payment Services) sections of the CyberSource web site.

Customer Support

For support information about any CyberSource service, visit the Support Center at:

http://www.cybersource.com/support
Introduction

Only the .NET 4.0 client for the Simple Order API is supported on both 32-bit and 64-bit operating systems. All of the other Simple Order API clients are supported on 32-bit operating systems only.

The CyberSource Simple Order API enables you to access CyberSource services using name-value pairs, XML, or the Simple Object Access Protocol (SOAP). The Simple Order API SDKs provide the client software for the following programming languages:

- ASP
- C, C++
- .NET version 1.1 and version 2.0
- Java
- Perl
- PHP

The Simple Order API is a good choice for businesses who:

- Must access CyberSource services that can only be accessed with APIs
- Have high volumes of transactions that warrant high levels of automation
- Must control and customize their customers' buying experience
- Have an order page that is secured with Secure Sockets Layer (SSL)
- Can provide skilled software programmers to implement CyberSource services with the API
Using ASP in a Hosted Environment

If you are operating in a hosted environment (with an Internet Service Provider hosting your web store), then read this section.

To use the CyberSource Simple Order API client for ASP, you must register several Microsoft Dynamic-Link Libraries DLLs. These DLLs ensure that your transactions are secure while being sent to CyberSource. If you use a hosted environment, you must check with your hosting provider (ISP) to make sure that they support the registration of custom DLLs. If you are unable to find any documentation related to your hosting provider's support of DLLs, then contact them with the following statement:

CyberSource requires the registration of three DLLs for use by my e-commerce software. These DLLs must be registered using regsvr32. CyberSource ensures the safety and functionality of these DLLs. Please let me know your policy for supporting this implementation.

Note that it is also possible that other merchants who use your hosting provider may also use CyberSource, and so the hosting provider may have already installed the CyberSource ASP client and registered the DLLs. In that case, CyberSource recommends you verify with your hosting provider which version of the client they have installed and registered. If the client you want to use is newer, ask them to register the newer DLLs.

If you have any questions regarding the above information or installation of the client, please contact Customer Support.
Choosing Your API and Client

API Variation

With this client package, you can use either of these variations of the Simple Order API:

- Name-value pairs, which are simpler to use than XML
- XML, which requires you to create and parse XML documents

The test that you run immediately after installing the client uses name-value pairs.

Client Versions

CyberSource updates the Simple Order API on a regular basis to introduce new API fields and functionality. To identify the latest version of the server-side API for CyberSource services, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor.

The Simple Order API Client for ASP also has a version, but it is not the same as the API version. The client version represents the version of the client-side code that you use to access CyberSource services.

When configuring the client, you indicate which version of the API you want to use. When setting this parameter, do not use the current version of the client; use the current version of the API.

Sample Code

The client contains sample scripts and sample ASP pages that you can use to test the client.
Basic ASP Page Example

The example below shows the primary VBScript code required to send a Simple Order API request for credit card authorization and process the reply. The example uses name-value pairs. For a more complete example, see the sample program and sample ASP pages included in the package (see "Sample Scripts," page 27). "Using Name-Value Pairs," page 48 shows you how to create the code.

```vbscript
' Set oMerchantConfig properties
Dim oMerchantConfig
set oMerchantConfig = Server.CreateObject( "CyberSourceWS.MerchantConfig" )
oMerchantConfig.MerchantID = "infodev"
oMerchantConfig.KeysDirectory = "\keys"
oMerchantConfig.SendToProduction = "0"
oMerchantConfig.TargetAPIVersion = "1.18"

' Create request hashtable
Dim oRequest
set oRequest = Server.CreateObject( "CyberSourceWS.Hashtable" )

' We want to do credit card authorization in this example
oRequest.Value( "ccAuthService_run" ) = "true"

' Add required fields
oRequest.Value( "billTo_firstName" ) = "Jane"
oRequest.Value( "billTo_lastName" ) = "Smith"
oRequest.Value( "billTo_street1" ) = "1295 Charleston Road"
oRequest.Value( "billTo_city" ) = "Mountain View"
oRequest.Value( "billTo_state" ) = "CA"
oRequest.Value( "billTo_postalCode" ) = "94043"
oRequest.Value( "billTo_country" ) = "US"
oRequest.Value( "billTo_email" ) = "jsmith@example.com"
oRequest.Value( "card_accountNumber" ) = "4111111111111111"
oRequest.Value( "card_expirationMonth" ) = "12"
oRequest.Value( "card_expirationYear" ) = "2010"
oRequest.Value( "purchaseTotals_currency" ) = "USD"

' There are two items in this example
oRequest.Value( "item_0_unitPrice" ) = "12.34"
oRequest.Value( "item_1_unitPrice" ) = "56.78"
```
Sample Scripts

The client contains two sample scripts, one for using name-value pairs and one for using XML. See "Testing the Client," page 30 or see the README file for more information about using the AuthCaptureSample.wsf script to test the client.

- For name-value pairs: See AuthCaptureSample.wsf in <installation directory>\samples\nvp.

- For XML: CyberSource recommends that you examine the name-value pair sample code listed above before implementing your code to process XML requests.

For the XML sample code, see AuthSample.wsf in <installation directory>\samples\xml. Also see the auth.xml XML document that the script uses.

Sample ASP Pages

The client download package also includes sample ASP pages in the <installation directory>\samples\store directory. You also have shortcuts to several of the files from the Start menu at Start > Programs > CyberSource Simple Order API for ASP > Sample Store.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>global.asa</td>
<td>Sets up the MerchantConfig object and stores it in a Session variable.</td>
</tr>
<tr>
<td>EditFile.bat</td>
<td>Batch file used with the Start menu program shortcuts. Not used directly with the ASP sample pages.</td>
</tr>
<tr>
<td>checkout.asp</td>
<td>Displays the contents of the shopping basket, prompts for address and payment information.</td>
</tr>
<tr>
<td>checkout2.asp</td>
<td>Authorizes the order and displays the result.</td>
</tr>
<tr>
<td>store_footer.asp</td>
<td>Footer used in the checkout pages.</td>
</tr>
</tbody>
</table>
Chapter 2 ASP Client

Table 2 Files in aspSample Directory (Continued)

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>store_header.asp</td>
<td>Header used in the checkout pages.</td>
</tr>
</tbody>
</table>

To use the sample ASP pages:

Step 1 In Microsoft Internet Information Services (IIS), create a virtual directory that points to the `<installation directory>\ samples\store` directory.

Step 2 Go to Start > Programs > CyberSource Simple Order API for ASP > Sample Store > Edit configuration script (global.asa) and set the properties of the MerchantConfig object to the correct values. For more information about the MerchantConfig settings, see "MerchantConfig Properties," page 34.

Step 3 If you have enabled logging, make sure that the Internet guest user account (default is IUSR_<machine name>) has write permission on the logs directory.

Step 4 Open a web browser and type the following URL:

http://localhost/<virtual directory>/checkout.asp

Installing and Testing the Client

Minimum System Requirements

- Windows Installer 2.0 or later

 If the Microsoft installer file (.msi) does not run, you may not have a suitable Windows Installer. You can download version 2.0 or a later version from the Microsoft Windows Installer Downloads page.

- Windows 2000 or XP, or later

- If using Windows XP: MSXML 4.0 Service Pack 2 (Microsoft XML Core Services)

- If using an operating system earlier than Windows 2000 SP3: WinHTTP 5.0

Note CyberSource recommends that your system use at least Windows 2000 SP3 because it comes with WinHTTP 5.1, which fixes bugs in the 5.0 version.
The SDK supports UTF-8 encoding.

Important

Failure to configure your client API host to a unique, public IP address will cause inconsistent transaction results.

The client API request ID algorithm uses a combination of IP address and system time, along with other values. In some architectures this combination might not yield unique identifiers.

Transaction Security Keys

The first thing you must do is create your security keys. The client uses the security key to add a digital signature to every request that you send. This signature helps ensure that no one else can use your CyberSource account to process orders. You specify the location of your key when you configure the client.

Important

You must generate two transaction security keys—one for the CyberSource production environment and one for the test environment. For information about generating and using security keys, see *Creating and Using Security Keys* (PDF | HTML).

Warning

You must protect your security key to ensure that your CyberSource account is not compromised.

Installing the Client

To install the client:

1. **Step 1** Go to the client downloads page on the CyberSource web site.
2. **Step 2** Download the latest client package. You can save the file in any directory.
3. **Step 3** Double-click the downloaded msi file.
 - The installation wizard opens.
4. **Step 4** Follow the instructions on the screen.
 - The client is installed on your system. The default installation directory for the package contents is the `c:\simapi-asp-n.n.n` directory. The Start menu includes a new item for the CyberSource Simple Order API for ASP.
Step 5 Test the client. See “Testing the Client,” page 30.

Testing the Client

After you install the client, test it immediately to ensure that the installation is successful.

To test the client:

Step 1 Modify the test script to include your merchant ID and the directory to your test environment security key:

a Choose Start > Programs > CyberSource Simple Order API for ASP > NVP Sample > Edit configuration script (config.vbs).

b In the config.vbs script, replace the default values for your merchant ID and the directory in which your test environment security key is stored. The lines of code look like this before you edit them:

 oMerchantConfig.MerchantID = "your_case_sensitive_merchant_id"
 oMerchantConfig.KeysDirectory = "your_keys_dir(e.g. baseDir\simapi-net-n.n.n\keys)"

c Save the script.

Step 2 Run the test by choosing Start > Programs > CyberSource Simple Order API for ASP > NVP Sample > Run test script (AuthCaptureSample.wsf). This test requests an authorization and then a follow-on capture if the authorization is successful.

A command shell opens and displays the results of the test.

- If the test is successful, a decision of ACCEPT appears for both the credit card authorization and the follow-on capture.
- If the test is not successful, a different decision value or an error message appears.
To troubleshoot if the test fails:

Step 1 Verify that the `config.vbs` changes that you made in Step b above are correct.

Step 2 Run the test again.

Step 3 If the test still fails, look at the error message and find the return status value (a number from 1 to 8).

Step 4 See the descriptions of the status values in "Possible Return Status Values," page 45, and follow any instructions given there for the error you received.

Step 5 Run the test again.

Step 6 If the test still fails, contact Customer Support.

The client is installed and tested. You are ready to create your own code for requesting CyberSource services. For information about creating requests, see "Using Name-Value Pairs," page 48 if you plan to use name-value pairs, or "Using XML," page 58 if you plan to use XML.

Going Live

When you complete all of your system testing and are ready to accept real transactions from your customers, your deployment is ready to go live.

CyberSource Essentials Merchants

If you use CyberSource Essentials services, you can use the Business Center site to go live. For a description of the process of going live, see the “Steps for Getting Started” section in *Getting Started with CyberSource Essentials*.

You must also configure your client so that it sends transactions to the production server and not the test server. See the description of the MerchantConfig property "SendToProduction," page 34.

After your deployment goes live, use real card numbers and other data to test every card type you support. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Process an authorization, then capture the authorization, and later refund the money. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.
CyberSource Advanced Merchants

If you use CyberSource Advanced services, see the “Steps for Getting Started” chapter in *Getting Started with CyberSource Advanced* for information about going live.

When your deployment goes live, your CyberSource account is updated so that you can send transactions to the CyberSource production server. If you have not already done so, you must provide your banking information to CyberSource so that your processor can deposit funds to your merchant bank account.

After CyberSource confirms that your deployment is live, make sure that you update your system so that it can send requests to the production server (ics2wsa.ic3.com) using your security keys for the production environment. The test server (ics2wstesta.ic3.com) cannot be used for real transactions. For more information about sending transactions to the production server, see the description of the MerchantConfig property "SendToProduction," page 34.

After your deployment goes live, use real card numbers and other data to test every card type, currency, and CyberSource application that your integration supports. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.

Deploying the Client to Another Computer

You can deploy the client to another computer without running the installer that CyberSource provided.

To deploy the client to another computer:

Step 1 On the destination computer, copy all the binaries (*.dll and *.pdb) into the `<installation directory>/lib` directory, or include them in your own installer.

Step 2 If the destination computer does not have MSXML 4.0 Service Pack 2 (Microsoft XML Core Services), copy the following files from the `%WINDIR%\system32` directory into the same directory on the destination computer:

- msxml4.dll
- msxml4r.dll

Step 3 Register `msxml4.dll`:

- a Open a command prompt.
- b Go to the `%WINDIR%\system32` directory.
- c At the prompt, type `regsvr32 msxml4.dll`

Step 4 Register the CyberSource `*.dll` files:
a Open a command prompt.

b Go to the directory in which the binaries are installed on the destination computer.

c At the prompt, type

```plaintext
regsvr32 CybsWSecurity.dll
regsvr32 CyberSourceWS.dll
```

You have deployed the client to the destination computer.

Updating the Client to Use a Later API Version

CyberSource periodically updates the Simple Order API (previously called the Web Services API). You can update your existing client to work with the new API version. Go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor/ for a list of the available API versions.

To update the client to use a later API version, update the value for the `TargetAPIVersion` in the MerchantConfig object (see Table 3, “MerchantConfig Properties,” on page 34). For example, to use the 1.18 version of the API, set the `TargetAPIVersion` to "1.18".
Client Objects

MerchantConfig
The MerchantConfig object controls these types of settings for the client:

- Security
- Server
- Timeout
- Logging

MerchantConfig Properties
The data type for all of the properties is string.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogString</td>
<td>Returns a string containing a comma-separated list of the MerchantConfig object’s properties and their values.</td>
</tr>
<tr>
<td>MerchantID</td>
<td>Merchant ID. If you specify a merchant ID in the request (either using the Hashtable object if using name-value pairs, or the XML document if using XML), the one in the request takes precedence over the one in the MerchantConfig object.</td>
</tr>
</tbody>
</table>
| KeysDirectory | Location of the merchant’s security key. UNC paths are allowed. The client includes a keys directory that you can use. Make sure that you use your test security key for the test environment and that you use your production security key for the production environment.
Note CyberSource recommends that you store your key locally for faster request processing. |
| SendToProduction | Flag that indicates whether the transactions for this merchant should be sent to the production server. Use one of these values:
- "0": Do not send to the production server; send to the test server.
- "1": Send to the production server. |
| TargetAPIVersion | Version of the Simple Order API to use, such as 1.18. Do not set this property to the current version of the client. Instead, set it to an available API version. See "Client Versions," page 25 for more information.
Note Go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor/ for a current list of the available versions. See the Simple Order API Release Notes for information about what has changed in each version. |
Table 3 MerchantConfig Properties (Continued)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KeyFilename</td>
<td>Name of the security key filename for the merchant, for example <code><keyName>.p12</code>.</td>
</tr>
<tr>
<td>ServerURL</td>
<td>Alternative server URL to use. See “Using Alternate Server Properties” below for more information. Give the complete URL because it will be used exactly as you specify here.</td>
</tr>
<tr>
<td>NamespaceURI</td>
<td>Alternative namespace URI to use. See “Using Alternate Server Properties” below for more information. Give the complete namespace URI because it will be used exactly as you specify here.</td>
</tr>
<tr>
<td>EffectiveKeyFilename</td>
<td>If AlternateKeyFilename is not empty, this property simply returns the value of AlternateKeyFilename. If AlternateKeyFilename is empty, the property looks for a bstrMerchantID parameter that you provide. If you do not provide one, it derives the key filename from the MerchantID property.</td>
</tr>
<tr>
<td>EffectiveServerURL</td>
<td>If AlternateServerURL is not empty, this property simply returns the value of AlternateServerURL. Otherwise, it derives the server URL from the TargetAPIVersion and SendToProduction properties.</td>
</tr>
<tr>
<td>EffectiveNamespaceURI</td>
<td>If AlternateNamespaceURI is not empty, this property simply returns the value of AlternateNamespaceURI. Otherwise, it derives the namespace URI from the property TargetAPIVersion. This is particularly useful if you are passing in the request as XML and do not want to hardcode the namespace URI in the XML string. You can call this property to dynamically set the namespace URI of your <code><requestMessage></code> element.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Length of timeout in seconds. The default is 110.</td>
</tr>
</tbody>
</table>
EnableLog

Flag directing the client to log transactions and errors. Possible values:
- 0: Do not enable logging.
- 1: Enable logging.

This property is ignored if you use a "Logger" object with the request.

PCI

Important Logging can cause very large log files to accumulate. Therefore, CyberSource recommends that you use logging only when troubleshooting problems. To comply with all Payment Card Industry (PCI) and Payment Application (PA) Data Security Standards regarding the storage of credit card and card verification number data, the logs that are generated contain only masked credit card and card verification number data (CVV, CVC2, CVV2, CID, CVN).

Follow these guidelines:
- Use debugging temporarily for diagnostic purposes only.
- If possible, use debugging only with test credit card numbers.
- Never store clear text card verification numbers.
- Delete the log files as soon as you no longer need them.
- Never send email to CyberSource containing personal and account information, such as customers’ names, addresses, card or check account numbers, and card verification numbers.

For more information about PCI and PABP requirements, see www.visa.com/cisp.

LogDirectory

Directory to which to write the log file. UNC paths are allowed. Note that the client will not create this directory for you; you must specify an existing directory. The client includes a logs directory that you can use.

This property is ignored if you use a "Logger" object with the request.

LogFilename

Log filename. The client uses cybs.log by default.

This property is ignored if you use a "Logger" object with the request.

LogMaximumSize

Maximum size in megabytes for the log file. When the log file reaches this size, it is archived into cybs.log.<yyyyymmddThhmmssxxx> and a new log file is started. The xxx indicates milliseconds. The default value is "10".

This property is ignored if you use a "Logger" object with the request.
Example Setting Merchant Configuration Object Properties

This example sets the MerchantID property of a MerchantConfig object.

```
Dim oMerchantConfig

set oMerchantConfig =
    Server.CreateObject( "CyberSourceWS.MerchantConfig" )

oMerchantConfig.MerchantID = "merchant123"
```

Using Alternate Server Properties

Use the ServerURL and NamespaceURI properties if CyberSource changes the convention used to specify the server URL and namespace URI, but has not updated the client yet.

For example, these are the server URLs and namespace URI for accessing the CyberSource services using the Simple Order API version 1.18:

- Test server URL:

 https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

- Production server URL:

 https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

- Namespace URI:

If in the future CyberSource changes these conventions, but does not provide a new version of the client, you can configure your existing client to use the new server and namespace conventions required by the CyberSource server.

MerchantConfig Method

MerchantConfig has one method:

Copy

Table 4 Copy Method

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Copy(oMerchantConfig, fNonEmptyOnly)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Copies the properties of oMerchantConfig.</td>
</tr>
<tr>
<td>Returns</td>
<td>Nothing</td>
</tr>
<tr>
<td>Parameters</td>
<td>oMerchantConfig: The specific MerchantConfig object.</td>
</tr>
<tr>
<td></td>
<td>fNonEmptyOnly: Flag indicating which properties to copy. Set to true to copy only the properties that are not null or empty. Set to false to copy all properties, whether or not null or empty.</td>
</tr>
</tbody>
</table>
ProxyConfig

The ProxyConfig object controls proxy settings.

ProxyConfig Properties

The data type for all of the properties is string.

Table 5 ProxyConfig Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogString</td>
<td>Returns a string containing a comma-separated list of the ProxyConfig object's properties and their values.</td>
</tr>
<tr>
<td>ProxySetting</td>
<td>Type of proxy server to use. Use one of these values:</td>
</tr>
<tr>
<td></td>
<td>"0": Use WinHTTP proxy configuration, which is set using</td>
</tr>
<tr>
<td></td>
<td>proxycfg.exe, a WinHTTP tool available in Windows 2000 SP3 and later,</td>
</tr>
<tr>
<td></td>
<td>or as part of the Resource Kit in earlier Windows versions.</td>
</tr>
<tr>
<td></td>
<td>"1": Do not use a proxy server.</td>
</tr>
<tr>
<td></td>
<td>"2": Use the proxy server specified in the ProxyServer property.</td>
</tr>
<tr>
<td>ProxyServer</td>
<td>Proxy server to use. Only used if ProxySetting= "2". Allowable formats include:</td>
</tr>
<tr>
<td></td>
<td>http://server:port</td>
</tr>
<tr>
<td></td>
<td><http://IP address>:port</td>
</tr>
<tr>
<td></td>
<td>The http:// and port are optional.</td>
</tr>
<tr>
<td>Username</td>
<td>User name used to authenticate against the proxy server if required. If the proxy server requires the domain name during authentication, add the domain name and a backslash: <domain><username></td>
</tr>
<tr>
<td>Password</td>
<td>Password used to authenticate against the proxy server, if required.</td>
</tr>
</tbody>
</table>

This following example sets a ProxyConfig object to use a proxy server.
Example Setting ProxyConfig Properties

Dim oProxyConfig

set oProxyConfig =
 Server.CreateObject("CyberSourceWS.ProxyConfig")

oProxyConfig.ProxySetting = "2"

oProxyConfig.ProxyServer = varServer ' variable that contains server

oProxyConfig.Username = varUsername ' variable that contains
 ' username

oProxyConfig.Password = varPassword ' variable that contains
 ' password

ProxyConfig Method

ProxyConfig has one method:

Copy

Table 6 Copy Method

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Copy(oProxyConfig, fNonEmptyOnly)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Copies the properties of oProxyConfig.</td>
</tr>
<tr>
<td>Returns</td>
<td>Nothing</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>oProxyConfig: The specific ProxyConfig object.</td>
<td></td>
</tr>
<tr>
<td>fNonEmptyOnly: Flag indicating which properties to copy. Set to true to copy only the properties that are not null or empty. Set to false to copy all properties, whether or not null or empty.</td>
<td></td>
</tr>
</tbody>
</table>
Hashtable

You use the Hashtable object to store the request and reply information. You use the Hashtable object only if you are using name-value pairs, and not XML.

Hashtable Properties

The data type for all of the properties is string.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogString</td>
<td>Returns a newline-character-separated list of the Hashtable object’s properties and their values.</td>
</tr>
<tr>
<td>Value</td>
<td>Reads or writes a value for the specified name. Accepts the name as a parameter. See the example below.</td>
</tr>
<tr>
<td>Content</td>
<td>Reads the content of the Hashtable as a string. Accepts a delimiter as a parameter, which is used to concatenate the name-value pairs. See the example below.</td>
</tr>
<tr>
<td>Names</td>
<td>Returns the array of name-value pairs. See the example below.</td>
</tr>
<tr>
<td>Overwrite</td>
<td>Gets or sets the overwrite mode. Allowable values:</td>
</tr>
<tr>
<td></td>
<td>True: If the name that is being set already exists, its value is replaced with the new one. This value is the default value upon instantiation.</td>
</tr>
<tr>
<td></td>
<td>False: The current value for the name is kept. The overwrite mode that you set is used for all field assignments until you reset it to the opposite value. See the example below.</td>
</tr>
</tbody>
</table>

The following example shows how to set name-value pairs in a Hashtable object:

Example Using the Value Property of the Hashtable Object

```vbscript
Dim oRequest
set oRequest = Server.CreateObject( "CyberSourceWS.Hashtable" )
oRequest.Value( "ccAuthService_run" ) = "true"
oRequest.Value( "card_accountNumber" ) = "4111111111111111"
```

Note

For the Hashtable object, the Value property is the default property. Thus you can leave out the ".Value" when setting and retrieving values. For example, the following syntax is valid:

```vbscript
oRequest( "ccAuthService_run" ) = "true"
```
The following example shows how to get the content of the Hashtable object as a string:

Example
Using the Content Property of the Hashtable Object

```
content = oRequest.Content (vbCRLF)
```

The following example shows how to list the name-value pairs in the Hashtable object:

Example
Using the Names Property of the Hashtable Object

```
names = oRequest.Names
For Each name in names
    Response.Write name & "=" & oRequest.Value(name)
Next
```

Example
Using the Overwrite Property of the Hashtable Object

```
oRequest.Overwrite = true
oRequest.Value("name") = "valueA"
oRequest.Value("name") = "valueB"  ' overwrites valueA
oRequest.Overwrite = false
oRequest.Value("name") = "valueC"  ' does not overwrite anymore
   ' name=valueB
```

Hashtable Method

The Hashtable object has one method:

Delete

Table 8 Delete Method

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Delete (bstrName)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Deletes the entry for bstrName in the Hashtable, if it exists.</td>
</tr>
<tr>
<td>Returns</td>
<td>Nothing</td>
</tr>
<tr>
<td>Parameters</td>
<td>bstrName: The name for the name-value pair to delete.</td>
</tr>
</tbody>
</table>
Logger

Use the Logger object if you want to log more information than the client already does.

Logging can cause very large log files to accumulate. Therefore, CyberSource recommends that you use logging only when troubleshooting problems. To comply with all Payment Card Industry (PCI) and Payment Application (PA) Data Security Standards regarding the storage of credit card and card verification number data, the logs that are generated contain only masked credit card and card verification number data (CVV, CVC2, CVV2, CID, CVN).

Follow these guidelines:

- Use logging temporarily and for diagnostic purposes only.
- If possible, use logging only with test credit card numbers.
- Delete the log files as soon as you no longer need them.
- Never send email to CyberSource containing personal and account information, such as customers' names, addresses, card or check account numbers, and card verification numbers.

For more information about PCI and PABP requirements, see www.visa.com/cisp.

Logger Properties

The data type for all of the properties is string.

Table 9 Logger Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>Filename to use for the log file. Field can include an absolute or relative path. For example, <code>c:\logs\file.log</code> or <code>.\file.log</code>. UNC paths are allowed. This property is read-only and can only be set by calling the PrepareFile method.</td>
</tr>
<tr>
<td>MaximumSize</td>
<td>Maximum size in megabytes for the log file. When the log file reaches this size, it is archived into <code><logfilename>.<yyyyymmddHHmmssxxxx></code> and a new log file is started. The <code>xxxx</code> indicates milliseconds. The default value is "10". This property is read-only and can only be set by calling the PrepareFile method.</td>
</tr>
</tbody>
</table>
Logger Methods

The Logger object has the following methods:

- PrepareFile
- Log
- LogTransactionStart

PrepareFile

Table 10 PrepareFile Method

<table>
<thead>
<tr>
<th>Syntax</th>
<th><code>PrepareFile(bstrFilename, bstrMaxSizeInMB)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Initializes the properties Filename and MaximumSize with <code>bstrFilename</code> and <code>bstrMaxSizeInMB</code>, respectively. The method then prepares the file by verifying that the file exceeds the maximum size. If it does, the method archives the file and creates a new empty file. You must call this method before calling the other Logger methods.</td>
</tr>
<tr>
<td>Returns</td>
<td>Nothing</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>bstrFilename</code>: The file name to use.</td>
</tr>
<tr>
<td></td>
<td><code>bstrMaxSizeInMB</code>: Maximum size for the file.</td>
</tr>
</tbody>
</table>

Log

Table 11 Log Method

<table>
<thead>
<tr>
<th>Syntax</th>
<th><code>Log(bstrType, bstrText)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Writes an entry to the log file by using this format <code><timestamp> <thread id> <logType> > <logText></code></td>
</tr>
<tr>
<td>Returns</td>
<td>Nothing</td>
</tr>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>bstrType</code>: A short name describing the purpose of the log entry. For example, the client uses values such as REQUEST, REPLY, FAULT, INFO, TRANSTART, ERROR. To make the log file easy to view, CyberSource recommends that you use a maximum of 9 characters.</td>
</tr>
<tr>
<td></td>
<td><code>bstrText</code>: The text to be logged in the file.</td>
</tr>
</tbody>
</table>
LogTransactionStart

Table 12 LogTransactionStart Method

<table>
<thead>
<tr>
<th>Syntax</th>
<th>LogTransactionStart(oMerchantConfig, oProxyConfig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Writes an entry that marks the start of a transaction and that also logs the content of the supplied oMerchantConfig and oProxyConfig objects. Note that oProxyConfig can be Nothing, but oMerchantConfig must point to a MerchantConfig object. This method is optional but recommended.</td>
</tr>
<tr>
<td></td>
<td>If you do not supply a Logger object in the request, the client creates its own Logger object and runs the LogTransactionStart method itself, creating a TRANSTART entry in the log file.</td>
</tr>
<tr>
<td></td>
<td>If you supply a Logger object in the request, the client does not call this method on your Logger object, so you must call the method yourself before logging anything else in the log file. Alternately, you can choose some other way to indicate the start of the transaction in the log file.</td>
</tr>
<tr>
<td>Returns</td>
<td>Nothing</td>
</tr>
<tr>
<td>Parameters</td>
<td>oMerchantConfig: The MerchantConfig object used for the transaction being logged.</td>
</tr>
<tr>
<td></td>
<td>oProxyConfig: The ProxyConfig object used for the transaction being logged. Can be Nothing.</td>
</tr>
</tbody>
</table>

Fault

The Fault object contains information if a fault occurs when the client sends the request. The following table lists the Fault object’s properties. The data type for all of the properties is string.

Table 13 Fault Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FaultDocument</td>
<td>The entire, unparsed fault document.</td>
</tr>
<tr>
<td>FaultCode</td>
<td>The fault code, which indicates where the fault originated.</td>
</tr>
<tr>
<td>FaultString</td>
<td>The fault string, which describes the fault.</td>
</tr>
<tr>
<td>RequestID</td>
<td>The requestID for the request.</td>
</tr>
</tbody>
</table>
Client

The Client object has one method.

RunTransaction

Table 14 RunTransaction Method

Syntax	nStatus = RunTransaction (oMerchantConfig, oProxyConfig, oLogger, varRequest, varReply, bstrErrorInfo)
Description	Sends the request to the CyberSource server and receives the reply.
Returns	A number from 0 to 8 that indicates the status of the request. See "Possible Return Status Values," page 45 for descriptions of the values.
Parameters	oMerchantConfig: A MerchantConfig object. Required.
	oProxyConfig: A ProxyConfig object. May be Nothing.
	oLogger: A "Logger" object. May be Nothing. Supply one only if you want to log more information than what the client logs. If you supply a Logger object, the client does not call its LogTransactionStart method. See "LogTransactionStart," page 44 for more information.
	varRequest: A variant that can be one of the items listed below in "Possible varRequest Values."
	varReply: A variant that can be one of the items listed below in "Possible varReply Values."
	bstrErrorInfo: If status is not 0, this parameter contains a BSTR that has more information about the status. If status is 0, this parameter is empty.

Possible Return Status Values

The runTransaction method returns a status indicating the result of the request. The following table describes the possible status values.

Table 15 Possible Status Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 | Result: The client successfully received a reply.
 Manual action to take: None |
| 1 | Result: An error occurred before the request could be sent. This usually indicates a configuration problem with the client.
 Manual action to take: Fix the problem described in bstrErrorInfo. |
| 2 | Result: An error occurred while sending the request.
 Manual action to take: None. |
Table 15 Possible Status Values (Continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3 | **Result:** An error occurred while waiting for or retrieving the reply.
 Manual action to take: Check the Transaction Search screens on the Business Center to verify that the request was processed, and if so, whether it succeeded. Update your transaction database appropriately. |
| 4 | **Result:** The client received a reply or a fault, but an error occurred while processing it.
 Value of varReply: Contains the server’s reply.
 Manual action to take: Examine the contents of varReply. If you cannot determine the status of the request, then check the Transaction Search screens on the Business Center to verify that the request was processed, and if so, whether it succeeded. Update your transaction database appropriately. |
| 5 | **Result:** The server returned a fault with FaultCode set to CriticalServerError.
 Manual action to take: Check the Transaction Search screens in the Business Center to verify that the request succeeded. When searching for the request, use the request ID provided in the RequestID property of the Fault object. |
| 6 | **Result:** The server returned a fault with FaultCode set to ServerError, indicating a problem with the CyberSource server.
 Manual action to take: None |
| 7 | **Result:** The server returned a fault with FaultCode set to a value other than ServerError or CriticalServerError. Indicates a possible problem with merchant status or the security key. Could also indicate that the message was tampered with after it was signed and before it reached the CyberSource server.
 Manual action to take: Examine the FaultString and fix the problem. You might need to generate a new security key, or you might need to contact Customer Support if there are problems with your merchant status. |
| 8 | **Result:** The server returned an HTTP status code other than 200 (OK) or 504 (gateway timeout). Note that if a 504 gateway timeout occurs, then the status=3.
 Value of varReply: Contains the HTTP response body, or if none was returned, the literal "(response body unavailable)".
 Manual action to take: None |

Possible varRequest Values

The varRequest parameter can be one of the following:

- Hashtable object: Makes the client use the name-value pairs
- DOMDocument40 object (part of MSXML 4.0): Makes the client use XML
- BSTR containing XML data: Makes the client use XML
Possible varReply Values

The varReply parameter can be one of these:

- Hashtable object: If varRequest was a Hashtable object and the return status is 0
- DOMDocument40 object: If varRequest was a DOMDocument40 object and the return status is 0
- BSTR containing the XML reply: If varRequest was a BSTR and the return status is 0
- Fault: If the return status is 5, 6, or 7. See "Fault," page 44 for information about the Fault object.
- BSTR containing the raw reply (the entire response body): If the return status is 4 or 8
- Empty if the return status is 1, 2, or 3

The following table summarizes the value of varReply that you receive for each status value. The bstrErrorInfo parameter in the reply always contains information about the status.

Table 16 Summary of varReply Values by Status

<table>
<thead>
<tr>
<th>Status</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMDocument40 or BSTR with XML or Hashtable (name-value pairs)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSTR with raw reply</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using Name-Value Pairs

This section explains how to use the ASP client to request CyberSource services by using name-value pairs.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server
- Processes the reply information

The CyberSource servers do not support persistent HTTP connections.

Important

The instructions in this section explain how to write VBScript that requests CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Creating and Sending Requests

The code in this section's example is incomplete. For a complete sample program, see the AuthCaptureSample.wsf file in the <installation directory>/samples\nvp directory, or see the sample ASP pages.

Note

To use any CyberSource service, you must create and send a request that includes the required information for that service.

The example that is developed in this section shows basic code for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.
Creating the MerchantConfig Object
First create a MerchantConfig object and set your merchant ID and other basic transaction settings:

```vbscript
Dim oMerchantConfig
set oMerchantConfig = Server.CreateObject( "CyberSourceWS.MerchantConfig" )
oMerchantConfig.MerchantID = "infodev"
oMerchantConfig.KeysDirectory = "\keys"
oMerchantConfig.SendToProduction = "0"
oMerchantConfig.TargetAPIVersion = "1.18"
```

Creating an Empty Request Hashtable
You next create a Hashtable to hold the request fields:

```vbscript
Dim oRequest
set oRequest = Server.CreateObject( "CyberSourceWS.Hashtable" )
```

Adding the Merchant ID
You next add the CyberSource merchant ID to the request.

If you specify a merchant ID in the Hashtable object, it overrides the merchant ID you specify in the MerchantConfig object.

```vbscript
oRequest.Value( "merchantID" ) = "infodev"
```

Adding Services to the Request Hashtable
You next indicate the service you want to use by adding the field to the request. For example, to request a credit card authorization:

```vbscript
oRequest.Value( "ccAuthService_run" ) = "true"
```

Requesting a Sale
You can request multiple services by adding additional fields to the request. For example, if you fulfill the order immediately, you can request credit card authorization and capture together (referred to as a "sale"):

```vbscript
oRequest.Value( "ccAuthService_run" ) = "true"
oRequest.Value( "ccCaptureService_run" ) = "true"
```
Adding Service-Specific Fields to the Request Hashtable

You next add the fields that are used by the services that you are requesting. If you request multiple services and they share common fields, you must add the field once only.

```
oRequest.Value( "billTo_firstName" ) = "Jane"
oRequest.Value( "billTo_lastName" ) = "Smith"
oRequest.Value( "card_accountNumber" ) = "4111111111111111"
oRequest.Value( "item_0_unitPrice" ) = "29.95"
```

The example above shows only a partial list of the fields you must send. Refer to "Related Documents," page 21 for information about the guides that list all of the fields for the services that you are requesting.

Sending the Request

You next create a Client object and send the request:

```
dim oClient
set oClient = WScript.CreateObject( "CyberSourceWS.Client" )
dim varReply, nStatus, strErrorInfo
nStatus = oClient.RunTransaction( _
    oMerchantConfig, Nothing, Nothing, oRequest, varReply, _
    strErrorInfo )
```

Interpreting Replies

Handling the Return Status

The nStatus handle is returned by the RunTransaction method. The nStatus indicates whether the CyberSource server received the request, the client received the reply, or there were any errors or faults during transmission. See "Possible Return Status Values," page 45 for descriptions of each status value. For a different example, see the AuthCaptureSample.wsf file in the <installation directory>\samples\nvp directory.
if nStatus = 0 then
 dim strContent
 ' Read the value of the "decision" in the varReply hashtable.
 ' If decision=ACCEPT, indicate to the customer that the request was successful.
 ' If decision=REJECT, indicate to the customer that the order was not approved.
 ' If decision=ERROR, indicate to the customer an error occurred and to try again later.
 strContent = GetReplyContent(varReply) ' get reply contents
 ' See "Processing the Reason Codes," page 53 for how to process the reasonCode from the reply.
 ' Note that GetReplyContent() is included in this document to help you understand how to process reason codes, but it is not included as part of the sample scripts or sample ASP pages.
else
 HandleError nStatus, strErrorInfo, oRequest, varReply
end if

'---------------------
sub HandleError(nStatus, strErrorInfo, oRequest, varReply)
'---------------------
' HandleError shows how to handle the different errors that can occur.
select case nStatus
 ' An error occurred before the request could be sent.
 case 1
 ' Non-critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Notify appropriate internal resources of the error.
 ' An error occurred while sending the request.
 case 2
 ' Non-critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' An error occurred while waiting for or retrieving the reply.
 case 3
 ' Critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Notify appropriate internal resources of the error.
 ' An error occurred after receiving and during processing of the reply.
 case 4
 ' Critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Look at the BSTR in varReply for the raw reply.
 ' Notify appropriate internal resources of the error.
 ' CriticalServerError fault
 case 5
 ' Critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Read the contents of the Fault object in varReply.
 ' Notify appropriate internal resources of the fault.
' ServerError fault
 case 6
 ' Non-critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Read the contents of the Fault object in varReply.

' Other fault
 case 7
 ' Non-critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Read the contents of the Fault object in varReply.
 ' Notify appropriate internal resources of the fault.

' HTTP error
 Case 8
 ' Non-critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Look at the BSTR in varReply for the raw reply.
end select
Processing the Reason Codes

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - **ACCEPT** if the request succeeded
 - **REJECT** if one or more of the services in the request was declined
 - **REVIEW** if you are a CyberSource Advanced merchant using CyberSource Decision Manager and it flags the order for review. See "Handling Decision Manager Reviews," page 55 for more information.
 - **ERROR** if there was a system error. See "Retrying When System Errors Occur," page 57 for more information.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the [Credit Card Services User Guide](#) (for CyberSource Essentials merchants) or in the service’s developer guide (for CyberSource Advanced merchants).

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.
' Note that GetReplyContent() is included in this document to help you
' understand how to process reason codes, but it is not included as part of
' the sample scripts or sample ASP pages.
'---------------------------
function GetReplyContent(varReply)
'---------------------------

dim strReasonCode
strReasonCode = varReply.Value("reasonCode")

select case strReasonCode

' Success
 case "100"
 GetReplyContent _
 = "Request ID: " & varReply.Value("requestID") & vbCrLf & _
 "Authorized Amount: " & _
 varReply.Value("ccAuthReply_amount") & vbCrLf & _
 "Authorization Code: " & _
 varReply.Value("ccAuthReply_authorizationCode")

' Insufficient funds
 case "204"
 GetReplyContent = "Insufficient funds in account. Please use a different" & _
 "card or select another form of payment."

' add other reason codes here that you must handle specifically

' For all other reason codes, return an empty string, in which case, you should
' display a generic message appropriate to the decision value you received.
 case else
 GetReplyContent = ""
end select

end function
Handling Decision Manager Reviews

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

The following example applies to CyberSource Advanced merchants only.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the `businessRules_ignoreAVSResult` field to “true” in your combined authorization and capture request:

```
oRequest.Value( "businessRules_ignoreAVSResult") = "true"
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, CyberSource recommends that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.
Using XML

This section describes how to request CyberSource services using XML.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server
- Processes the reply information

The CyberSource servers do not support persistent HTTP connections.

Important

The instructions in this section explain how to write VBScript that requests CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Sample Code

CyberSource recommends that you examine the name-value pair sample code provided in AuthCaptureSample.wsf before implementing your code to process XML requests. The sample will give you a basic understanding of how to request CyberSource services. The sample code file is located in the <installation directory>\samples\nvp directory.

After examining that sample code, read this section to understand how to create code to process XML requests. Note that the code in this section’s example is incomplete. For a complete sample program, see the AuthSample.wsf file in the <installation directory>\samples\xml directory.
Creating a Request Document

With the client, you can create an XML request document by using any application and send a request to CyberSource. For example, if you have a customer relationship management (CRM) system that uses XML to communicate with other systems, you can use the CRM system to generate request documents.

The XML document that you provide must be either a DOMDocument object (part of MSXML 4.0) or a string containing XML data.

The request document must be validated against the XML schema for CyberSource transactions. To view the xsd file for the version of the Simple Order API that you are using, go to https://ics2ws.ic3.com/commerce/1.x/transactionProcessor.

Important

Make sure that the elements in your document appear in the correct order. Otherwise, your document will not be valid, and your request will fail.

The following example shows a basic XML document for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

The XML document in this example is incomplete. For a complete example, see auth.xml in `<installation directory>\samples\xml`.

Creating an Empty Request

Add the XML declaration and the document's root element:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
</requestMessage>
```

When you construct a request, you must indicate the correct namespace for the elements, and the namespace must use the same API version that you specify in the MerchantConfig object. For example, if you set TargetAPIVersion=1.18, the namespace must be `urn:schemas-cybersource-com:transaction-data-1.18`.

Note

The XML document that you receive in the reply always uses a prefix of `c:` (for example, `xmlns:c="urn:schemas-cybersource-com:transaction-data-1.18"`). Make sure you use an XML parser that supports namespaces.
Adding the Merchant ID
You next add the CyberSource merchant ID to the request.

If you specify a merchant ID in the XML document, it overrides the merchant ID you specify in the MerchantConfig object.

```xml
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
</requestMessage>
```

Adding Services to the Request
You next indicate the service that you want to use by creating an element for that service in the request, then setting the element’s `run` attribute to `true`. For example, to request a credit card authorization:

```xml
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
  <ccAuthService run="true"/>
</requestMessage>
```

Requesting a Sale
You can request multiple services by adding additional elements. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (referred to as a “sale”):

```xml
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
  <ccAuthService run="true"/>
  <ccCaptureService run="true"/>
</requestMessage>
```
Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. Most fields are child elements of container elements; for example, a `<card>` element contains the customer’s credit card information.

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
  <billTo>
    <firstName>Jane</firstName>
    <lastName>Smith</lastName>
  </billTo>
  <item id="0">
    <unitPrice>29.95</unitPrice>
  </item>
  <card>
    <accountNumber>4111111111111111</accountNumber>
  </card>
  <ccAuthService run="true"/>
</requestMessage>
```

The example above shows only a partial list of the fields you must send. Refer to “Related Documents,” page 21 for information about the guides that list all of the fields for the services that you are requesting.

Sending Requests

Once you have created an XML document, you use VBscript in your ASP pages to send the request to CyberSource.

Creating the MerchantConfig Object

First create a MerchantConfig object and set your merchant ID and other basic transaction settings:

```vbscript
Dim oMerchantConfig
set oMerchantConfig = Server.CreateObject( "CyberSourceWS.MerchantConfig" )
oMerchantConfig.MerchantID = "infodev"
oMerchantConfig.KeysDirectory = "\keys"
oMerchantConfig.SendToProduction = "0"
oMerchantConfig.TargetAPIVersion = "1.18"
```
Chapter 2 ASP Client

Reading the XML Document

' read XML document
Dim strXMLRequest
strXMLRequest = ReadTextFile("MyXMLDocument.xml")

' If you did not hardcode the namespace in the XML document, make sure
' to insert the effective namespace URI from the MerchantConfig object
' into the XML document.

Sending the Request

You next create a Client object and send the request:

dim oClient
set oClient = WScript.CreateObject("CyberSourceWS.Client")

' This example uses a DOMDocument40 object and not a string.
' See the AuthSample.wsf example in the samples\xml directory for an example
' of how to handle a string.
' Create the DOMDocument40 object
dim varRequest
set varRequest = WScript.CreateObject("Msxml2.DOMDocument.4.0")

' Load the XML string into the DOMDocument40 object
varRequest.loadXML(strXMLRequest)

' send request
dim varReply, nStatus, strErrorInfo
nStatus = oClient.RunTransaction(_
 oMerchantConfig, Nothing, Nothing, varRequest, _
 varReply, strErrorInfo)
Interpreting Replies

Handling the Return Status

The nStatus is the handle returned by the RunTransaction method. The nStatus indicates whether the CyberSource server received the request, the client received the reply, or there were any errors or faults during transmission. See "Possible Return Status Values," page 45 for descriptions of each status value. For a different example, see the AuthSample.wsf file in the client’s <installation directory>\samples\xml directory.

' set the SelectionNamespace for later XPath queries
strNamespaceURI = oMerchantConfig.EffectiveNamespaceURI
varReply.setProperty "SelectionNamespaces", _
 "xmlns:c='" & strNamespaceURI & '''
if nStatus = 0 then
 dim strContent
 ' Get the contents of the <replyMessage> element
 dim oReplyMessage
 set oReplyMessage =
 varReply.SelectSingleNode("c:replyMessage"
 ' Read the value of the "decision" in the oReplyMessage.
 ' If decision=ACCEPT, indicate to the customer that the request was successful.
 ' If decision=REJECT, indicate to the customer that the order was not approved.
 ' If decision=ERROR, indicate to the customer an error occurred and to try again
 ' later.
 ' Now get reason code results:
 strContent = GetReplyContent(oReplyMessage)
 ' See "Processing the Reason Codes," page 53 for how to process the reasonCode
 ' from the reply.
 ' Note that GetReplyContent() is included in this document to help you understand
 ' how to process reason codes, but it is not included as part of the sample scripts
 ' or sample ASP pages.
else HandleError nStatus, strErrorInfo, oRequest, varReply
end if

'---------------------
sub HandleError(nStatus, strErrorInfo, oRequest, varReply)
'---------------------

' HandleError shows how to handle the different errors that can occur.
select case nStatus

 ' An error occurred before the request could be sent.
 case 1
 ' Non-critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Notify appropriate internal resources of the error.

' An error occurred while sending the request.
case 2
 ' Non-critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' An error occurred while waiting for or retrieving the reply.
case 3
 ' Critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Notify appropriate internal resources of the error.

' An error occurred after receiving and during processing
' of the reply.
case 4
 ' Critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Look at the BSTR in varReply for the raw reply.
 ' Notify appropriate internal resources of the error.

' CriticalServerError fault
case 5
 ' Critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Read the contents of the Fault object in varReply.
 ' Notify appropriate internal resources of the fault.

' ServerError fault
case 6
 ' Non-critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Read the contents of the Fault object in varReply.

' Other fault
case 7
 ' Non-critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Read the contents of the Fault object in varReply.
 ' Notify appropriate internal resources of the fault.

' HTTP error
Case 8
 ' Non-critical error.
 ' Tell customer the order could not be completed and to try again later.
 ' Look at the BSTR in varReply for the raw reply.

end select
Chapter 2 ASP Client

Processing the Reason Codes

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - ACCEPT if the request succeeded
 - REJECT if one or more of the services in the request was declined
 - REVIEW if you use CyberSource Decision Manager and it flags the order for review. See "Handling Decision Manager Reviews," page 67 for more information.
 - ERROR if there was a system error. See "Retrying When System Errors Occur," page 57 for more information.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide (for CyberSource Essentials merchants) or in the service’s developer guide (for CyberSource Advanced merchants).

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.
Note that GetReplyContent() is included in this document to help you understand how to process reason codes, but it is not included as part of the sample scripts or sample ASP pages.

function GetReplyContent(oReplyMessage)
{
 strReasonCode = GetValue(oReplyMessage, "c:reasonCode")

 select case strReasonCode
 ' Success
 case "100"
 ' Insufficient funds
 case "204"
 GetReplyContent = "Insufficient funds in account. Please use a different card or select another form of payment." & vbCrLf & "For all other reason codes, return an empty string, in which case, you should display a generic message appropriate to the decision value you received.
 case else
 GetReplyContent = ""
 end select
 end function
Handling Decision Manager Reviews

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Chapter 2 ASP Client

Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

This following additional example applies to CyberSource Advanced merchants only.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the businessRules_ignoreAVSResult field to “true” in your combined authorization and capture request:

```
<businessRules>
  <ignoreAVSResult>true</ignoreAVSResult>
</businessRules>
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, CyberSource recommends that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.
Choosing Your API and Client

API Variation
With this client package, you can use either of these variations of the Simple Order API:
- Name-value pairs, which are simpler to use than XML
- XML, which requires you to create and parse XML documents

The test that you run immediately after installing the client uses name-value pairs.

Client Versions
CyberSource updates the Simple Order API on a regular basis to introduce new API fields and functionality. To identify the latest version of the API, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor.

This represents the version of the server-side code for the CyberSource services.

The Simple Order API Client for C/C++ also has a version, but it is not the same as the API version. The client version represents the version of the client-side code that you use to access the CyberSource services.
When configuring the client, you indicate which version of the API you want to use. When setting this parameter, do not use the current version of the client; use the current version of the API.

Sample Code

The client contains two sets of sample code, one for using name-value pairs and one for using XML. See "Testing the Client," page 77 or see the README file for more information about using the sample code to test the client.

- **Name-value pairs**: See `authCaptureSample.c` in `<installation directory>/samples/nvp`.
- **XML**: We suggest that you examine the name-value pair sample code listed above before implementing your code to process XML requests.

For the XML sample code, see `authSample.c` in `<installation directory>/samples/xml`. Also see the `auth.xml` XML document that the script uses.

Basic C/C++ Page Example

The following example shows the code required to send a Simple Order API request for credit card authorization and process the reply. The example uses name-value pairs. For a more complete example, see the sample code and sample store included in the package (see "Sample Code," page 71). "Using Name-Value Pairs," page 90 shows you how to create the code.

```c
#include "cybersource.h"

// Load the configuration settings
const char CYBS_CONFIG_INI_FILE[] = "./cybs.ini";
pConfig = cybs_load_config( CYBS_CONFIG_INI_FILE );

// Set up the request by creating an empty CybsMap and add fields to it
pRequest = cybs_create_map();

// We want to do credit card authorization in this example

cybs_add( pRequest, "ccAuthService_run", "true" );
```
// Add required fields

cybs_add(pRequest, "merchantID", "infodev");
cybs_add(pRequest, "merchantReferenceCode", "MRC-14344");
cybs_add(pRequest, "billTo_firstName", "Jane");
cybs_add(pRequest, "billTo_lastName", "Smith");
cybs_add(pRequest, "billTo_street1", "Charleston");
cybs_add(pRequest, "billTo_city", "Mountain View");
cybs_add(pRequest, "billTo_state", "CA");
cybs_add(pRequest, "billTo_postalCode", "94043");
cybs_add(pRequest, "billTo_country", "US");
cybs_add(pRequest, "billTo_email", "jsmith@example.com");
cybs_add(pRequest, "card_accountNumber", "4111111111111111");
cybs_add(pRequest, "card_expirationMonth", "12");
cybs_add(pRequest, "card_expirationYear", "2010");
cybs_add(pRequest, "purchaseTotals_currency", "USD");

// This example has two items

cybs_add(pRequest, "item_0_unitPrice", "12.34");
cybs_add(pRequest, "item_1_unitPrice", "56.78");

// Add optional fields here according to your business needs
// Send request

Create the reply structure and send the request
pReply = cybs_create_map();
status = cybs_run_transaction(pConfig, pRequest, pReply);

// Handle the reply. See "Handling the Return Status," page 93.
Installing and Testing the Client

Minimum System Requirements

For Linux

- Linux kernel 2.2, LibC6 on an Intel processor
- GNU GCC compiler (with C++ enabled)

For Windows

- Windows XP, 2000, or newer
- Microsoft Visual Studio 6.0

The SDK supports UTF-8 encoding.

Important

Failure to configure your client API host to a unique, public IP address will cause inconsistent transaction results.

The client API request ID algorithm uses a combination of IP address and system time, along with other values. In some architectures this combination might not yield unique identifiers.
Transaction Security Keys

The first thing you must do is create your security key. The client uses the security key to add a digital signature to every request that you send. This signature helps ensure that no one else can use your CyberSource account to process orders. You specify the location of your key when you configure the client.

Important
You must generate two transaction security keys—one for the CyberSource production environment and one for the test environment. For information about generating and using security keys, see Creating and Using Security Keys (PDF | HTML).

The Simple Order API client for C/C++ package includes the `ca-bundle.crt`, a bundle of certificate files. The client expects to find the `ca-bundle.crt` file in the same directory as your security keys. If you decide to move it elsewhere, use the `sslCertFile` configuration parameter to specify the file’s location (see the description of "sslCertFile," page 76).

Warning
You must protect your security key to ensure that your CyberSource account is not compromised.

Installing the Client

To install the client:

Step 1 Go to the client downloads page on the Support Center.

Step 2 Download the latest client package, and save it in any directory.

Step 3 Unpack the file.

This creates an installation directory called `simapi-c-n.n.n`, where `n.n.n` is the client version. The client is now installed on your system.

Step 4 Configure the client. See "Configuring Client Settings" below.

Step 5 Test the client. See "Testing the Client," page 77.

You have installed and tested the client. You are ready to create your own code for requesting CyberSource services. Finish reading this section, and then move on to either "Using Name-Value Pairs," page 90 if you plan to use name-value pairs, or "Using XML," page 100 if you plan to use XML.
Configuring Client Settings

To run the sample code included in the client package, you must set the configuration parameters in the cybs.ini file, which is located in the installation directory. You can also use this file when running transactions in a production environment (see the function descriptions in "C/C++ API for the Client," page 80). Table 17 describes the parameters that you can set. Note that the default cybs.ini file that comes with the client package does not include all of the parameters listed in Table 17. It includes only the ones required to run the sample code.

If you have multiple merchant IDs, or if you are a reseller handling multiple merchants, you can use different configuration settings depending on the merchant ID. See "Configuring for Multiple Merchant IDs," page 115 for more information.

Table 17 Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>merchantID</td>
<td>Merchant ID. This client uses this value if you do not specify a merchant ID in the request itself.</td>
</tr>
<tr>
<td>keysDirectory</td>
<td>Location of the merchant’s security keys for the production and the test environments. The client includes a keys directory that you can use. Note CyberSource recommends that you store your key locally for faster request processing.</td>
</tr>
<tr>
<td>sendToProduction</td>
<td>Flag that indicates whether the transactions for this merchant should be sent to the production server. Use one of these values: false: Do not send to the production server; send to the test server (default setting). true: Send to the production server.</td>
</tr>
<tr>
<td>targetAPIVersion</td>
<td>Version of the Simple Order API to use, for example: 1.18. Do not set this property to the current version of the client; set it to an available API version. Note Go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor to see a current list of the available versions. See the Simple Order API Release Notes, for information about what has changed in each version.</td>
</tr>
<tr>
<td>keyFilename</td>
<td>Name of the security key filename for the merchant in the format <key_fileName>.p12.</td>
</tr>
<tr>
<td>serverURL</td>
<td>Alternate server URL to use. See "Using Alternate Server Configuration Settings," page 114 for more information. Give the complete URL because it will be used exactly as you specify here.</td>
</tr>
<tr>
<td>namespaceURI</td>
<td>Alternate namespace URI to use. See "Using Alternate Server Configuration Settings," page 114 for more information. Give the complete namespace URI, as it will be used exactly as you specify here.</td>
</tr>
</tbody>
</table>
enableLog Flag directing the client to log transactions and errors. Possible values:
- **false**: Do not enable logging (default setting).
- **true**: Enable logging.

Important Logging can cause very large log files to accumulate. Therefore, CyberSource recommends that you use logging only when troubleshooting problems. To comply with all Payment Card Industry (PCI) and Payment Application (PA) Data Security Standards regarding the storage of credit card and card verification number data, the logs that are generated contain only masked credit card and card verification number data (CVV, CVC2, CVV2, CID, CVN).

Follow these guidelines:
- Use debugging temporarily for diagnostic purposes only.
- If possible, use debugging only with test credit card numbers.
- Never store clear text card verification numbers.
- Delete the log files as soon as you no longer need them.
- Never send email to CyberSource containing personal and account information, such as customers’ names, addresses, card or check account numbers, and card verification numbers.

For more information about PCI and PABP requirements, see www.visa.com/cisp.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logDirectory</td>
<td>Directory to which to write the log file. Note that the client will not create this directory for you; you must specify an existing directory. The client includes a <code>logs</code> directory that you can use.</td>
</tr>
<tr>
<td>logFilename</td>
<td>Log file name. The client uses <code>cybs.log</code> by default.</td>
</tr>
<tr>
<td>logMaximumSize</td>
<td>Maximum size in megabytes for the log file. The default value is “10”. When the log file reaches the specified size, it is archived into <code>cybs.log.<yyyyymmdd>hhmmssxxxx</code> and a new log file is started. The <code>xxxx</code> indicates milliseconds.</td>
</tr>
<tr>
<td>sslCertFile</td>
<td>The location of the bundled file of CA Root Certificates (ca-bundle.crt) which is included in the client download package. The client automatically looks for the file in the directory where your security keys are stored (specified by <code>keysDirectory</code>). If you move the file so it does not reside in <code>keysDirectory</code>, use this configuration setting to specify the full path to the file, including the file name.</td>
</tr>
<tr>
<td>timeout</td>
<td>Length of timeout in seconds. The default is 110.</td>
</tr>
<tr>
<td>proxyServer</td>
<td>Proxy server to use. Allowable formats include:</td>
</tr>
<tr>
<td></td>
<td>- <code><http://>server:<port></code></td>
</tr>
<tr>
<td></td>
<td>- <code><http://>IP address:<port></code></td>
</tr>
<tr>
<td></td>
<td>The <code>http://</code> and <code>port</code> are optional.</td>
</tr>
<tr>
<td></td>
<td>Note The default port is 1080. If your proxy server is listening on another port, you must specify a port number.</td>
</tr>
</tbody>
</table>
Testing the Client

After you install and configure the client, test it immediately to ensure that the installation is successful.

To test the client:

Step 1
At a command prompt, go to the `<installation directory>/samples/nvp` directory.

Step 2
Run the sample program by typing

```
authCaptureSample
```

The results of the test are displayed in the window.

- If the test is successful, a decision of ACCEPT appears for both the credit card authorization and the follow-on capture.
- If the test is not successful, a different decision value or an error message appears.
To troubleshoot if the test fails:

Step 1 Check to see that your cybs.ini settings are correct.

Step 2 Run the test again.

Step 3 If the test still fails, look at the error message and find the return status value (a numeric value from 0 to 8).

Step 4 See the descriptions of the status values in "Possible Return Status Values," page 86 and follow any instructions given there for the error you received.

Step 5 Run the test again.

Step 6 If the test still fails, contact Customer Support.

To run the XML sample:

Step 1 At a command prompt, go to the `<installation directory>/samples/xml` directory.

Step 2 Run the sample program by typing

```bash
authSample
```

The results of the test are displayed in the window.

- If the test is successful, a decision of ACCEPT appears for both the credit card authorization and the follow-on capture.
- If the test is not successful, a different decision value or an error message appears.
Going Live

When you have completed all of your system testing and are ready to accept real transactions from your customers, your deployment is ready to go live.

CyberSource Essentials Merchants

If you use CyberSource Essentials services, you can use the Business Center site to go live. For a description of the process of going live, see the “Steps for Getting Started” section in Getting Started with CyberSource Essentials.

After your deployment goes live, use real card numbers and other data to test every card type you support. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Process an authorization, then capture the authorization, and later refund the money. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.

CyberSource Advanced Merchants

If you use CyberSource Advanced services, see the “Steps for Getting Started” chapter in Getting Started with CyberSource Advanced for information about going live.

When your deployment goes live, your CyberSource account is updated so that you can send transactions to the CyberSource production server. If you have not already done so, you must provide your banking information to CyberSource so that your processor can deposit funds to your merchant bank account.

After CyberSource confirms that your deployment is live, make sure that you update your system so that it can send requests to the production server (ics2wsa.ic3.com) using your security keys for the production environment. The test server (ics2wstest.ic3.com) cannot be used for real transactions. For more information about sending transactions to the production server, see the description of the configuration setting "sendToProduction," page 75.

After your deployment goes live, use real card numbers and other data to test every card type, currency, and CyberSource application that your integration supports. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.
Chapter 3 C/C++ Client

Updating the Client to Use a Later API Version

CyberSource periodically updates the Simple Order API (previously called the Web Services API). You can update your existing client to work with the new API version. Go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor for a list of the available API versions.

To update the client to use a later API version, update the value for the targetAPIVersion configuration parameter. For example, to use the 1.18 version of the API, set the property to 1.18.

C/C++ API for the Client

CybsMap Structure

CybsMap is the structure that contains your configuration settings, your request, and the reply. You use the functions described in the next section to manipulate the structure, which includes adding the configuration settings, adding either name-value pairs or an XML document for the request, sending the request, and retrieving the corresponding reply.

Available Functions

The client API includes the functions described in these sections:

- "cybs_load_config()", page 81
- "cybs_create_map()", page 81
- "cybs_destroy_map()", page 81
- "cybs_set_add_behavior()", page 82
- "cybs_add()", page 82
- "cybs_remove()", page 82
- "cybs_get()", page 83
- "cybs_get_first()", page 83
- "cybs_get_next()", page 84
- "cybs_get_count()", page 84
- "cybs_create_map_string()", page 84
- "cybs_destroy_map_string()", page 85
- "cybs_run_transaction()", page 85
cybs_load_config()

Table 18 cybs_load_config()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>CybsMap *cybs_load_config(const char *szFilename)</th>
</tr>
</thead>
</table>
| Description | Creates an empty CybsMap structure and loads the configuration settings into the structure from a file. If you include a configuration property in the file more than once, the behavior is undefined. The add behavior setting (see "cybs_set_add_behavior()", page 82) of the returned map is set to 2 (overwrite). This allows you to use the cybs_add() function ("cybs_add()") page 82) to immediately override any settings that were read from the configuration file.
You must later free the returned pointer by using cybs_destroy_map() (see "cybs_destroy_map()") page 81). |
| Returns | Returns a pointer to the CybsMap structure containing the configuration settings. |
| Parameters | szFilename: Name of the configuration file with the full or relative path. |

cybs_create_map()

Table 19 cybs_create_map()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>CybsMap *cybs_create_map()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Creates an empty CybsMap structure with the add behavior set to CYBS_NO_CHECK. You must later free the returned pointer by using cybs_destroy_map() (see "cybs_destroy_map()") page 81).</td>
</tr>
<tr>
<td>Returns</td>
<td>Returns a pointer to the new empty CybsMap structure.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None.</td>
</tr>
</tbody>
</table>

cybs_destroy_map()

Table 20 cybs_destroy_map()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>void cybs_destroy_map(CybsMap *pMap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Destroys a CybsMap structure created with either cybs_create_map() or cybs_load_config().</td>
</tr>
<tr>
<td>Returns</td>
<td>Returns nothing.</td>
</tr>
<tr>
<td>Parameters</td>
<td>pMap: The CybsMap structure to be destroyed.</td>
</tr>
</tbody>
</table>
cybs_set_add_behavior()

Table 21 cybs_set_add_behavior()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>CybsAddBehavior cybs_set_add_behavior(CybsMap *pRequest, CybsAddBehavior add_behavior)</th>
</tr>
</thead>
</table>
| Description | Sets the type of add behavior that will be used when you add name-value pairs to the specified message structure:
| | 0: When you add a new name-value pair, the client does not check to see if the name-value pair already exists in the structure. If the name already exists, the client still adds the name-value pair to the structure. This is the default value for cybs_create_map().
| | 1: If you try to add a name that already exists in the structure, the client keeps the existing name and value. The client does not allow you to add the same name or change the value of an existing name.
| | 2: If you try to add a name that already exists in the structure, the client overwrites the existing name's value with the new value. This is the default value for cybs_load_config(). |
| Returns | Returns the previous add behavior setting. |
| Parameters | pRequest: The CybsMap structure in which to apply the add behavior setting.
| | add_behavior: The add behavior type to assign to the structure. |

cybs_add()

Table 22 cybs_add()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>int cybs_add(CybsMap *pRequest, const char *szName, const char *szValue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Adds a name-value pair to the specified message structure. The function will do nothing if pRequest, szName, or szValue is null. With this function you can add name-value pairs for API fields or for configuration settings.</td>
</tr>
<tr>
<td>Returns</td>
<td>Returns 0 on success or -1 on failure.</td>
</tr>
</tbody>
</table>
| Parameters | pRequest: The CybsMap structure to add the name-value pairs to.
| | szName: The name to add.
| | szValue: The value to add. |

cybs_remove()

Table 23 cybs_remove()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>void cybs_remove(CybsMap *pRequest, const char *szName)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Uses the specified name to remove the name-value pair from the structure.</td>
</tr>
<tr>
<td>Returns</td>
<td>Returns nothing. Simply returns if the name does not exist.</td>
</tr>
</tbody>
</table>
| Parameters | pRequest: The CybsMap structure to be used.
| | szName: The name of the value to remove. |
cybs_get()

Table 24 cybs_get()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>const char *cybs_get(CybsMap *pMap, const char *szName)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Gets the value corresponding to the specified name. Note that this pointer is owned by the client and you should not free it.</td>
</tr>
<tr>
<td>Returns</td>
<td>Returns a pointer to the value or null if the name does not exist.</td>
</tr>
<tr>
<td>Parameters</td>
<td>pMap: The CybsMap structure to be used.</td>
</tr>
<tr>
<td></td>
<td>szName: The name to use.</td>
</tr>
</tbody>
</table>

cybs_get_first()

Table 25 cybs_get_first()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>void cybs_get_first(CybsMap *pMap, const char **pszName, const char **pszValue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Returns a pointer to the first name and to its value in the map. Note that the entries in the map are not sorted in any way. If the map contains no entries, *pszName and *pszValue are null. It is sufficient just to check *pszName. Note that the pointers *pszName and *pszValue are owned by the client; you should not free them. Use cybs_get_next() to get the subsequent entries (see "cybs_get_next()," page 84).</td>
</tr>
<tr>
<td>Returns</td>
<td>Returns nothing.</td>
</tr>
<tr>
<td>Parameters</td>
<td>pMap: The CybsMap structure to use.</td>
</tr>
<tr>
<td></td>
<td>*pszName: Pointer to the first name in the map.</td>
</tr>
<tr>
<td></td>
<td>*pszValue: Pointer to the value of the first name in the map.</td>
</tr>
</tbody>
</table>
cybs_get_next()

Table 26 cybs_get_next()

Syntax	void cybs_get_next(CybsMap *pMap, const char **pszName, const char **pszValue)
Description	Returns a pointer to the next name and to its value in the map. Note that the entries in the map are not sorted in any way. You may use this function only after using cybs_get_first() with the same CybsMap structure. If the map contains no more entries, then *pszName and *pszValue would be null. It is sufficient just to check *pszName. Note that the pointers *pszName and *pszValue are owned by the client; you should not free them. The function's behavior is undefined if you update the map (for example, if you add a new entry) between calls to cybs_get_first() and cybs_get_next().
Returns	Returns nothing.
Parameters	pMap: The CybsMap structure to use. *pszName: Pointer to the first name in the map. *pszValue: Pointer to the value of the first name in the map.

cybs_get_count()

Table 27 cybs_get_count()

Syntax	int cybs_get_count(CybsMap *pMap)
Description	Returns the number of name-value pairs in the specified message structure.
Returns	Returns the number of name-value pairs.
Parameters	pMap: The CybsMap structure to use.

cybs_create_map_string()

Table 28 cybs_create_map_string()

Syntax	char *cybs_create_map_string(CybsMap *pMap)
Description	Creates a string containing all of the name-value pairs in the structure separated by the newline character sequence that is appropriate to the operating system. If the structure is empty, the function returns an empty string. On failure, the function returns null. You must later free the returned pointer using cybs_destroy_map_string() (see below).
Returns	Returns a pointer to the string containing the name-value pairs.
Parameters	pMap: The CybsMap structure to use.
cybs_destroy_map_string()

Table 29 cybs_destroy_map_string()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>void cybs_destroy_map_string(char *szMapString)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Destroys a string created with cybs_create_map_string().</td>
</tr>
<tr>
<td>Returns</td>
<td>Returns nothing.</td>
</tr>
<tr>
<td>Parameters</td>
<td>szMapString: The map string to destroy.</td>
</tr>
</tbody>
</table>

cybs_run_transaction()

Table 30 cybs_run_transaction()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>CybsStatus cybs_run_transaction(CybsMap *pConfig, CybsMap *pRequest, CybsMap **ppReply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sends the request to the CyberSource server and receives the reply.</td>
</tr>
<tr>
<td>Returns</td>
<td>A value that indicates the status of the request (see Table 31, page 86 for a list of values).</td>
</tr>
<tr>
<td>Parameters</td>
<td>pconfig: Pointer to the configuration map structure to use.</td>
</tr>
</tbody>
</table>

- pRequest: Pointer to a map structure containing one of these:
 - The individual name-value pairs in the request (for name-value pair users)
 - A single key called _xml_document whose value is the XML document representing the request (for XML users)

- ppReply: Pointer to a pointer to a map structure containing one of these:
 - The individual name-value pairs in the reply (for name-value pair users)
 - A single key called _xml_document whose value is the XML document representing the reply (for XML users)
 - If an error occurs, a combination of these keys and their values:
 - _error_info
 - _raw_reply
 - _fault_document
 - _fault_code
 - _fault_string
 - _fault_request_id

See below for descriptions of these keys.

Note You must later free the *ppReply pointer with cybs_destroy_map() (see "cybs_destroy_map()," page 81).
Reply Key Descriptions

- **_error_info**: Information about the error that occurred
- **_raw_reply**: The server’s raw reply
- **_fault_document**: The entire, unparsed fault document
- **_fault_code**: The fault code, which indicates where the fault originated
- **_fault_string**: The fault string, which describes the fault.
- **_fault_request_id**: The request ID for the request.

Possible Return Status Values

The cybs_run_transaction() function returns a status indicating the result of the request. Table 31 describes the possible status values, including whether the error is critical. If an error occurs after the request has been sent to the server, but the client cannot determine whether the transaction was successful, then the error is considered critical. If a critical error happens, the transaction may be complete in the CyberSource system but not complete in your order system. The descriptions below indicate how to handle critical errors.

Note
The sample code (when run from a command prompt) displays a numeric value for the return status, which is listed in the first column.

Table 31 Possible Status Values

<table>
<thead>
<tr>
<th>Numeric Value (for Sample Code)</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CYBS_S_OK</td>
<td>Critical: No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result: The client successfully received a reply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**Keys in ppReply: For name-value pair users, **ppReply has the reply name-value pairs for the services that you requested.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For XML users, **ppReply contains the _xml_document key, with the response in XML format.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manual action to take: None</td>
</tr>
<tr>
<td>1</td>
<td>CYBS_S_PRE_SEND_ERROR</td>
<td>Critical: No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result: An error occurred before the request could be sent. This usually indicates a configuration problem with the client.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**Keys in ppReply: _error_info</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manual action to take: Fix the problem described in the error information.</td>
</tr>
</tbody>
</table>
Table 31 Possible Status Values (Continued)

<table>
<thead>
<tr>
<th>Numeric Value (for Sample Code)</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CYBS_S_SEND_ERROR</td>
<td>Critical: No
Result: An error occurred while sending the request.
Keys in **ppReply: _error_info
Manual action to take: None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note A typical send error that you might receive when testing occurs if the ca-bundle.crt file is not located in the same directory as your security key. See the description of the sslCertFile configuration parameter in Table 17, page 75 for information about how to fix the problem.</td>
</tr>
<tr>
<td>3</td>
<td>CYBS_S_RECEIVE_ERROR</td>
<td>Critical: Yes
Result: An error occurred while waiting for or retrieving the reply.
Keys in **ppReply: _error_info, _raw_reply
Manual action to take: Check the Transaction Search screens on the Business Center to verify that the request was processed, and if so, whether it succeeded. Update your transaction database appropriately.</td>
</tr>
<tr>
<td>4</td>
<td>CYBS_S_POST_RECEIVE_ERROR</td>
<td>Critical: Yes
Result: The client received a reply or a fault, but an error occurred while processing it.
Keys in **ppReply: _error_info, _raw_reply
Manual action to take: Examine the value of _raw_reply. If you cannot determine the status of the request, then check the Transaction Search screens on the Business Center to verify that the request was processed, and if so, whether it succeeded. Update your transaction database appropriately.</td>
</tr>
</tbody>
</table>
Table 31 Possible Status Values (Continued)

<table>
<thead>
<tr>
<th>Numeric Value (for Sample Code)</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 5 CYBS_S_ CRITICAL_SERVER_FAULT | Critical: Yes
Result: The server returned a fault with _fault_code set to CriticalServerError.
Keys in **ppReply:**
 _error_info
 _fault_document
 _fault_code
 _fault_string
 _fault_request_id
Manual action to take: Check the Transaction Search screens on the Business Center to verify that the request succeeded. When searching for the request, use the request ID provided by _fault_request_id. |
| 6 CYBS_S_SERVER_FAULT | Critical: No
Result: The server returned a fault with _fault_code set to ServerError, indicating a problem with the CyberSource server.
Keys in **ppReply:**
 _error_info
 _fault_document
 _fault_code
 _fault_string
Manual action to take: None |
Table 31 Possible Status Values (Continued)

<table>
<thead>
<tr>
<th>Numeric Value (for Sample Code)</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 7 | CYBS_S_OTHERFAULT | **Critical:** No
Result: The server returned a fault with _fault_code set to a value other than ServerError or CriticalServerError. Indicates a possible problem with merchant status or the security key. Could also indicate that the message was tampered with after it was signed and before it reached the CyberSource server.
Keys in **ppReply:
_error_info
fault_document
fault_code
fault_string
Manual action to take: Examine the value of the _fault_string and fix the problem. You might need to generate a new security key, or you might need to contact Customer Support if there are problems with your merchant status. For more information, see Creating and Using Security Keys (PDF | HTML).
Note A typical error that you might receive occurs if your merchant ID is configured for "test" mode but you send transactions to the production server. See the description of the sendToProduction configuration parameter in Table 17, page 75 for information about fixing the problem. |
| 8 | CYBS_S_HTTPERROR | **Critical:** No
Result: The server returned an HTTP status code other than 200 (OK) or 504 (gateway timeout). Note that if a 504 gateway timeout occurs, then the status=3.
Keys in **ppReply:
_error_info
_raw_reply (contains the HTTP response body, or if none was returned, the literal "(no response available)").
Manual action to take: None. |
Chapter 3 C/C++ Client

The figure below summarizes the reply information you receive for each status value.

Using Name-Value Pairs

This section explains how to use the client to request CyberSource services by using name-value pairs.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server
- Processes the reply information

The CyberSource servers do not support persistent HTTP connections.

The instructions in this section explain how to use C/C++ to request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Sample Code

The code in this section’s example is incomplete. For a complete sample program, see the authCaptureSample.c file in the <installation directory>/samples/nvp directory.
Chapter 3 C/C++ Client

Creating and Sending Requests
To use any CyberSource service, you must create and send a request that includes the required information for that service.

The following example shows basic code for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

Adding the Use Statement
First add the include statement for the cybersource.h file:

```
#include "cybersource.h"
```

Loading the Configuration Settings
Next use cybs_load_config() to create a new CybsMap structure and load the configuration settings from a file:

```
const char CYBS_CONFIG_INI_FILE[] = "/cybs.ini";
pConfig = cybs_load_config( CYBS_CONFIG_INI_FILE );
```

You could instead create an empty CybsMap structure and add each configuration setting separately. You could also use a combination of the two methods: You could read the settings from a file and then add new settings using the cybs_add() function to override the settings read from the file.

Creating the Empty Request and Reply
Next use cybs_create_map() to create the request and reply:

```
pRequest = cybs_create_map();
pReply = cybs_create_map();
```

Adding the Merchant ID
You next add the CyberSource merchant ID to the request. You can let the CyberSource C/C++ client automatically retrieve the merchant ID from the pConfig structure, or you can set it directly in the request (see below). The pRequest value overrides the pConfig value.

```
cybs_add( pRequest, "merchantID", "infodev" );
```
Adding Services to the Request Structure

You next indicate the service you want to use by adding the field to the request. For example, to request a credit card authorization:

```c
    cybs_add( pRequest, "ccAuthService_run", "true" );
```

Requesting a Sale

You can request multiple services by adding additional fields to the request. For example, if you fulfill the order immediately, you can request credit card authorization and capture together (referred to as a “sale”):

```c
    cybs_add( pRequest, "ccAuthService_run", "true" );
    cybs_add( pRequest, "ccCaptureService_run", "true" );
```

Adding Service-Specific Fields to the Request

You next add the fields that are used by the services that you are requesting. If you request multiple services and they share common fields, you must add the field once only.

```c
    cybs_add( pRequest, "merchantReferenceCode", "3009AF229L7W" );
    cybs_add( pRequest, "billTo_firstName", "Jane" );
    cybs_add( pRequest, "billTo_lastName", "Smith" );
    cybs_add( pRequest, "card_accountNumber", "4111111111111111" );
    cybs_add( pRequest, "item_0_unitPrice", "29.95" );
```

The example above shows only a partial list of the fields you must send. Refer to "Requesting CyberSource Services," page 90 for information about the guides that list all of the fields for the services that you are requesting.

Sending the Request

You next send the request:

```c
    status = cybs_run_transaction( pConfig, pRequest, pReply );
```
Interpreting Replies

Handling the Return Status

The status value is the handle returned by the cybs_run_transaction() function. The status indicates whether the CyberSource server received the request, the client received the reply, or there were any errors or faults during transmission. See "Possible Return Status Values," page 86 for descriptions of each status value. For a different example, see the authCaptureSample.c file in the <installation directory>/samples/nvp directory:

```c
if( status == CYBS_S_OK ) {
    // Read the value of the "decision" in pReply.
    decision = cybs_get( pReply, "decision" );
    // If decision=ACCEPT, indicate to the customer that the request was successful.
    // If decision=REJECT, indicate to the customer that the order was not approved.
    // If decision=ERROR, indicate to the customer that an error occurred and to try
    // again later.
    // Now get reason code results:
    reason = cybs_get( pReply, "reasonCode" );
    // See "Processing the Reason Codes," page 96 for how to process the
    // reasonCode from the reply.
} else {
    handleError( status, pRequest, pReply );
}
```

```
void handleError( CybsStatus stat, CybsMap* preq, CybsMap* prpl )
{
    // handleError shows how to handle the different errors that can occur.
    const char* pstr;
    pstr = cybs_get{ prpl, CYBS_SK_ERROR_INFO };
    switch( stat ) {
    ```
// An error occurred before the request could be sent.
case CYBS_S_PRE_SEND_ERROR :

 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Notify appropriate internal resources of the error.

 break;

// An error occurred while sending the request.
case CYBS_S_SEND_ERROR :

 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.

 break;

// An error occurred while waiting for or retrieving the reply.
case CYBS_S_RECEIVE_ERROR :

 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Notify appropriate internal resources of the error.
 // See the sample code for more information about handling critical errors.

 break;

// An error occurred after receiving and during processing of the reply.
case CYBS_S_POST_RECEIVE_ERROR :

 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Look at _raw_reply in pReply for the raw reply.
 // Notify appropriate internal resources of the error.
 // See the sample code for more information about handling critical errors.

 break;

// CriticalServerError fault
case CYBS_S_CRITICAL_SERVER_FAULT :

 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Read the various fault details from the pReply.
 // Notify appropriate internal resources of the fault.
 // See the sample code for more information about reading fault details and
 // handling a critical error.

 break;
// ServerError fault

case CYBS_S_SERVER_FAULT :
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Read the various fault details from the pReply.
 // See the sample code for information about reading fault details.
 break;

// Other fault

case CYBS_S_OTHER_FAULT :
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Read the various fault details from pReply.
 // Notify appropriate internal resources of the fault.
 // See the sample code for information about reading fault details.
 break;

// HTTP error

case CYBS_S_HTTP_ERROR :
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Look at _raw_reply in pReply for the raw reply.
 break;

default :
 // Unknown error

}
Processing the Reason Codes

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - **ACCEPT** if the request succeeded
 - **REJECT** if one or more of the services in the request was declined
 - **REVIEW** if you are using CyberSource Decision Manager and it flags the order for review. See "Handling Decision Manager Reviews," page 98 for more information.
 - **ERROR** if there was a system error. See "Retrying When System Errors Occur," page 99 for more information.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the *Credit Card Services User Guide* for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

Important CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.
// Example of how to handle reason codes

// Success
if(reason == "100") {
 printf("Request ID: %s
AuthorizedAmount: %s
Authorization Code: %s\n",
 cybs_get(pReply, "requestID"),
 cybs_get(pReply, "ccAuthReply_amount"),
 cybs_get(pReply, "ccAuthReply_authorizationCode"));
}

// Insufficient funds
else if (reason == "204") {
 printf("Insufficient funds in account. Please use a different
 card or select another form of payment.\n") ;
}

// add other reason codes here that you must handle specifically
else {
 // For all other reason codes, return NULL, in which case, you should display
 // a generic message appropriate to the decision value you received.
}
Handling Decision Manager Reviews

If you use CyberSource Decision Manager, you may also receive the \textit{REVIEW} value in the \textit{decision} field. \textit{REVIEW} means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new \textit{REVIEW} value. Ideally, you will update your order management system to recognize the \textit{REVIEW} response and handle it according to your business rules. If you cannot update your system to handle the \textit{REVIEW} response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the \textit{REVIEW} response like a \textit{REJECT} response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to \textit{ACCEPT} in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to \textit{ACCEPT} in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the \textit{Decision Manager Developer Guide Using the Simple Order API} (PDF | HTML) or the \textit{Decision Manager Developer Guide Using the SCMP Order API} (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Chapter 3 C/C++ Client

Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

This following additional example applies to CyberSource Advanced merchants only.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the businessRules_ignoreAVSResult field to “true” in your combined authorization and capture request:

```c
    cybs_add( pRequest, "businessRules_ignoreAVSResult", "true" );
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note

Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.
If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.

Using XML

This section describes how to request CyberSource services using XML.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server

Important

The CyberSource servers do not support persistent HTTP connections.

- Processes the reply information

The instructions in this section explain how to use C/C++ to request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.
Sample Code

We suggest that you examine the name-value pair sample code provided in authCaptureSample.c before implementing your code to process XML requests. The sample will give you a basic understanding of how to request CyberSource services. The sample code file is located in the <installation directory>/samples/nvp directory.

After examining that sample code, read this section to understand how to create code to process XML requests. Note that the code in this section’s example is incomplete. For a complete sample program, see the authSample.c file in the <installation directory>/samples/xml directory.

Creating a Request Document

The client allows you to create an XML request document by using any application, then send the request to CyberSource. For example, if you have a customer relationship management (CRM) system that uses XML to communicate with other systems, you can use the CRM system to generate request documents.

The request document must validate against the XML schema for CyberSource transactions. To view the schema, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor and look at the xsd file for the version of the Simple Order API you are using.

Important

Make sure that the elements in your document appear in the correct order. If they do not, your document will not validate, and your request will fail.

The example that is developed in the following sections shows a basic XML document for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

The XML document in this example is incomplete. For a complete example, see the auth.xml document in the samples/xml directory.
Creating an Empty Request
Add the XML declaration and the document’s root element:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
</requestMessage>
```

When you construct a request, you must indicate the correct namespace for the elements, and the namespace must use the same API version that you specify in the configuration settings file. For example, if `targetAPIVersion=1.18` in the cybs.ini file, the namespace must be `urn:schemas-cybersource-com:transaction-data-1.18`.

Adding the Merchant ID
You next add the CyberSource merchant ID to the request.

```xml
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
</requestMessage>
```

Note
The XML document that you receive in the reply always uses a prefix of `c:` (for example, `xmlns:c="urn:schemas-cybersource-com:transaction-data-1.18"`). Make sure you use an XML parser that supports namespaces.

Adding Services to the Request
You next indicate the service that you want to use by creating an element for that service in the request, then setting the element’s `run` attribute to `true`. For example, to request a credit card authorization:

```xml
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
  <ccAuthService run="true"/>
</requestMessage>
```
Chapter 3 C/C++ Client

Requesting a Sale

You can request multiple services by adding additional elements. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (referred to as a "sale"):

```xml
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
  <ccAuthService run="true"/>
  <ccCaptureService run="true"/>
</requestMessage>
```

Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. Most fields are child elements of container elements; for example, a `<card>` element contains the customer's credit card information.

```xml
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
  <billTo>
    <firstName>Jane</firstName>
    <lastName>Smith</lastName>
  </billTo>
  <item id="0">
    <unitPrice>29.95</unitPrice>
  </item>
  <card>
    <accountNumber>4111111111111111</accountNumber>
  </card>
  <ccAuthService run="true"/>
</requestMessage>
```

The example above shows only a partial list of the fields you must send. Refer to "Requesting CyberSource Services," page 90 for information about the guides that list all of the fields for the services that you are requesting.
Chapter 3 C/C++ Client

Sending Requests
Once you have created an XML document, you use C/C++ to send the request to CyberSource.

Adding the Use Statement
First add the include statement for the cybersource.h file:

```c
#include "cybersource.h"
```

Loading the Configuration Settings
Next use cybs_load_config() to create a new CybsMap structure and load the configuration settings from a file:

```c
cnst char CYBS_CONFIG_INI_FILE[] = "./cybs.ini";
pConfig = cybs_load_config( CYBS_CONFIG_INI_FILE );
```

You could instead create an empty CybsMap structure and add each configuration setting separately. You could also use a combination of the two methods: You could read the settings from a file and then add new settings using the cybs_add() function to override the settings read from the file.

Note
The namespace that you specify in the XML document must use the same API version that you specify in the configuration settings file. For example, if targetAPIVersion=1.18 in the file, the namespace must be urn:schemas-cybersource-com:transaction-data-1.18. The example code below retrieves the API version from the configuration settings file and places it in the XML document.

Creating the Empty Request and Reply
Next use cybs_create_map() to create the request and reply:

```c
pRequest = cybs_create_map();
pReply = cybs_create_map();
```
Reading the XML Document

Next, read the XML document and add the information to the request.

```c
const char CYBS_XML_INPUT_FILE[] = "/myXMLDocument.xml";

// Read the XML document and store in a variable called szXML.
// See the authSample.c sample code for instructions on reading the
// XML document.

// Add the XML document to the request.

cybs_add(pRequest, CYBS_SK_XML_DOCUMENT, szXML);
```

Sending the Request

You next send the request:

```c
status = cybs_run_transaction(pConfig, pRequest, pReply);
```

Interpreting Replies

Handling the Return Status

The `status` value is the handle returned by the `cybs_run_transaction()` function. The `status` indicates whether the CyberSource server received the request, the client received the reply, or there were any errors or faults during transmission. See "Possible Return Status Values," page 86 for descriptions of each status value. For a different example, see the `authSample.c` file in the client's `<installation directory>/xmlSample` directory.
if(status == CYBS_S_OK) {

 // Read the value of the "decision" in pReply.
 decision = cybs_get(pReply, "decision");

 // If decision=ACCEPT, indicate to the customer that the request was successful.
 // If decision=REJECT, indicate to the customer that the order was not approved.
 // If decision=ERROR, indicate to the customer that there was an error and to try
 // again later.

 // Now get reason code results:
 reason = cybs_get(pReply, "reasonCode");

 // See "Processing the Reason Codes," page 96 for how to process the
 // reasonCode from the reply.

} else {

 handleError(status, pRequest, pReply);

}

//--
// handleError shows how to handle the different errors that can occur.
//--

void handleError(CybsStatus stat, CybsMap* preq, CybsMap* prpl)
//--
{

 // An error occurred before the request could be sent.
 const char* pstr;
 pstr = cybs_get(prpl, CYBS_SK_ERROR_INFO);
 switch(stat) {

 case CYBS_S_PRE_SEND_ERROR :
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Notify appropriate internal resources of the error.
 break;

 // An error occurred while sending the request.
 case CYBS_S_SEND_ERROR :
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.

 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
break;

// An error occurred while waiting for or retrieving the reply.

case CYBS_S_RECEIVE_ERROR :
 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Notify appropriate internal resources of the error.
 // See the sample code for more information about handling critical errors.
 break;

// An error occurred after receiving and during processing of the reply.

case CYBS_S_POST_RECEIVE_ERROR :
 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Look at _raw_reply in pReply for the raw reply.
 // Notify appropriate internal resources of the error.
 // See the sample code for more information about handling critical errors.
 break;

// CriticalServerError fault

case CYBS_S_CRITICAL_SERVER_FAULT :
 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Read the various fault details from the pReply.
 // Notify appropriate internal resources of the fault.

// ServerError fault

case CYBS_S_SERVER_FAULT :
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Read the various fault details from pReply.
 // See the sample code for information about reading fault details.
 break;

// Other fault

case CYBS_S_OTHER_FAULT :

// Non-critical error.
// Tell customer the order could not be completed and to try again later.
// Read the various fault details from pReply.
// Notify appropriate internal resources of the fault.
// See the sample code for information about reading fault details.
break;

// HTTP error

case CYBS_S_HTTP_ERROR :

 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Look at _raw_reply in pReply for the raw reply.

 break;
default :

 // Unknown error

}
Processing the Reason Codes

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Important

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - **ACCEPT** if the request succeeded
 - **REJECT** if one or more of the services in the request was declined
 - **REVIEW** if you use CyberSource Decision Manager and it flags the order for review. See "Handling Decision Manager Reviews," page 111 for more information.
 - **ERROR** if there was a system error. See "Retrying When System Errors Occur," page 113 for more information.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

Important

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.
/ Example of how to handle reason codes

// Success

if(reason == "100") {
 printf("Request ID: %s\nAuthorizedAmount: %s\nAuthorization Code: %s\n",
 cybs_get(pReply, "requestID"),
 cybs_get(pReply, "ccAuthReply_amount"),
 cybs_get(pReply, "ccAuthReply_authorizationCode"));
}

// Insufficient funds

else if (reason == "204") {
 printf("Insufficient funds in account. Please use a different
 card or select another form of payment.\n") ;
}

// add other reason codes here that you must handle specifically

else {
 // For all other reason codes, return NULL, in which case, you should display a
 // generic message appropriate to the decision value you received.

}
Handling Decision Manager Reviews

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

This following additional example applies to CyberSource Advanced merchants only.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the businessRules_ignoreAVSResult field to “true” in your combined authorization and capture request:

```xml
<businessRules>
  <ignoreAVSResult>true</ignoreAVSResult>
</businessRules>
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.
Advanced Configuration Information

Using Alternate Server Configuration Settings

You use the serverURL and namespaceURI configuration settings if CyberSource changes the convention we use to specify the server URL and namespace URI, but we have not had the opportunity to update the client yet.

For example, these are the server URLs and namespace URI for accessing the CyberSource services using the Simple Order API version 1.18:

- **Test server URL:**

 https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

- **Production server URL:**

 https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

- **Namespace URI:**

 urn:schemas-cybersource-com:transaction-data-1.18

 If view the above URLs in a web browser, a list of the supported API versions and the associated schema files are displayed.

If in the future CyberSource changes these conventions, but does not provide a new version of the client, you can configure your existing client to use the new server and namespace conventions required by the CyberSource server.
Configuring for Multiple Merchant IDs

If you have multiple merchant IDs, or if you are a reseller handling multiple merchants, you can have different configuration settings for different merchant IDs. You set these in the configuration object that you pass to the `cybs_run_transaction()` function. When using the samples provided in the client package, you set the configuration parameters in `cybs.ini` file.

All of the properties except `merchantID` can be prefixed with "<merchantID>." to specify the settings for a specific merchant.

Example Merchant-Specific Properties Settings

If you have a merchant with merchant ID of `merchant123`, and you want enable logging only for that merchant, you can set the `enableLog` parameter to `true` for all requests that have `merchant123` as the merchant ID:

```
merchant123.enableLog=true
enableLog=false
```

The client disables logging for all other merchants.
Choosing an API Variation

With this client package, you can use any of the three variations of the Simple Order API:

- Name-value pairs, which are simpler to use than XML
- XML, which requires you to create and parse XML documents
- SOAP (Simple Object Access Protocol) 1.1, which provides an object-oriented interface

The test that you run immediately after installing the client uses name-value pairs.
A Note about the API and Client Versions

CyberSource updates the Simple Order API on a regular basis to introduce new API fields and functionality. To identify the latest version of the API, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor.

This represents the version of the server-side code for the CyberSource services.

If a new version of the API has been released but we have not yet updated the .NET client to use this new version, you can manually update the client to use a different version. For example, when a new version of the API is released, you can update your client to use this new API version. See "Updating the Client to Use a Later API Version," page 128.
Basic C# Program Example

The example below shows the primary code required to send a SOAP request for credit card authorization and process the reply. See "Using SOAP," page 152 for more information.

```csharp
using CyberSource.Soap;
using CyberSource.Soap.CyberSourceWS;
using System;
using System.Configuration;
using System.Net;
namespace Sample {
    class Sample {
        static void Main(string[] args) {
            RequestMessage request = new RequestMessage();
            request.merchantID = "infodev";

            // we want to do Credit Card Authorization in this sample
            request.ccAuthService = new CCAuthService();
            request.ccAuthService.run = "true";

            // add required fields
            request.merchantReferenceCode = "148705832705344";
            BillTo billTo = new BillTo();
            billTo.firstName = "Jane";
            billTo.lastName = "Smith";
            billTo.street1 = "1295 Charleston Road";
            billTo.city = "Mountain View";
            billTo.state = "CA";
            billTo.postalCode = "94043";
            billTo.country = "US";
            billTo.email = "jsmith@example.com";
            request.billTo = billTo;
            Card card = new Card();
            card.accountNumber = "4111111111111111";
            card.expirationMonth = "12";
            card.expirationYear = "2010";
            request.card = card;
            PurchaseTotals purchaseTotals = new PurchaseTotals();
            purchaseTotals.currency = "USD";
            request.purchaseTotals = purchaseTotals;

            // there is one item in this sample
            request.item = new Item[1];
            Item item = new Item();
            item.id = "0";
            item.unitPrice = "29.95";
            request.item[0] = item;
        }
    }
}
```
Minimum System Requirements

- Microsoft Windows 2000 or later
- .NET Framework 1.1 or later
- Microsoft Web Services Enhancements (WSE) 2.0 Service Pack 3 or later (name-value pair and SOAP clients only)

Important

Failure to configure your client API host to a unique, public IP address will cause inconsistent transaction results.

The client API request ID algorithm uses a combination of IP address and system time, along with other values. In some architectures this combination might not yield unique identifiers.
Transaction Security Keys

The first thing you must do is create your security key. The client uses the security key to add a digital signature to every request that you send. This signature helps ensure that no one else can use your CyberSource account to process orders. You specify the location of your key when you configure the client.

Important

You must generate two transaction security keys—one for the CyberSource production environment and one for the test environment. For information about generating and using security keys, see *Creating and Using Security Keys* (PDF | HTML).

Warning

You must protect your security key to ensure that your CyberSource account is not compromised.

Installing the Client

The Simple Order API for .NET Setup Wizard installs and registers files for the client. By default, the wizard installs the name-value pair, XML, and SOAP client variations. If you prefer, you can install only the variations that you plan to use.

To install the client for the first time:

Step 1

Go to the [client downloads page](https://support.cybersource.com) on the Support Center and download the latest version of the client.

Step 2

Run the downloaded file.

The [Simple Order API for .NET Setup Wizard](https://support.cybersource.com) appears.

Step 3

Follow the instructions in the wizard to install the client.

If you use the default installation directory, the client is installed in `c:\simapi-net-1.1-n.n.n`

where `n.n.n` is the client version.

Step 4

Test the client. See "Using the Test Applications," page 122.

You have installed and tested the client. You are ready to create your own code for requesting CyberSource services. Finish reading this section, and then move on to:

- "Using Name-Value Pairs," page 129 if you plan to use name-value pairs
- "Using XML," page 140 if you plan to use XML
- "Using SOAP," page 152 if you plan to use SOAP
Upgrading from a Previous Version

To upgrade your client from a previous version:

Step 1 Follow the above installation instructions.

Step 2 In VS.NET, remove the reference to the previous client.

Step 3 Add a reference to the new client (NVPClient.dll, SoapClient.dll, or XmlClient.dll).

Step 4 In your code, if you were using the Basic client, replace the references to CyberSource.Basic with CyberSource.NVP.

Step 5 If you are using the XML client, replace any references to the Client.CYBS_NAMESPACE with XmlClient.GetRequestNamespace().

Step 6 Although the previous configuration setting keys are still supported, it is recommended that you now prefix them with "cybs." to prevent them from clashing with any other settings that you may have.

Step 7 CyberSource recommends that you stop hard coding the URL. In other words, replace the key "cybersourceURL" with "cybs.sendToProduction" and set it to true or false (or 0 or 1) as appropriate. The URL will be derived internally from this flag.

You have successfully upgraded your client to the new version.
Using the Test Applications

Each type of client variation—name-value pair, XML, and SOAP—includes two precompiled test applications. You can use these test applications to ensure that the client was installed correctly.

One application requests a single CyberSource service, a credit card authorization. The other requests multiple CyberSource services.

The test applications and their source code are installed with the other files for the client. The following table shows the filename for each test application.

<table>
<thead>
<tr>
<th>Type of Client</th>
<th>Filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name-Value Pair</td>
<td>Single service:</td>
</tr>
<tr>
<td></td>
<td>NVP\Prebuilt\Single.exe</td>
</tr>
<tr>
<td></td>
<td>Multiple services:</td>
</tr>
<tr>
<td></td>
<td>NVP\Prebuilt\Multi.exe</td>
</tr>
<tr>
<td></td>
<td>Source code:</td>
</tr>
<tr>
<td></td>
<td>NVP\SingleServiceSample\</td>
</tr>
<tr>
<td></td>
<td>NVP\MultiServiceSample\</td>
</tr>
<tr>
<td>XML</td>
<td>Single service:</td>
</tr>
<tr>
<td></td>
<td>Xml\Prebuilt\Single.exe</td>
</tr>
<tr>
<td></td>
<td>Multiple services:</td>
</tr>
<tr>
<td></td>
<td>Xml\Prebuilt\Multi.exe</td>
</tr>
<tr>
<td></td>
<td>Source code:</td>
</tr>
<tr>
<td></td>
<td>Xml\SingleServiceSample\</td>
</tr>
<tr>
<td></td>
<td>Xml\MultiServiceSample\</td>
</tr>
<tr>
<td>SOAP</td>
<td>Single service:</td>
</tr>
<tr>
<td></td>
<td>Soap\Prebuilt\Single.exe</td>
</tr>
<tr>
<td></td>
<td>Multiple services:</td>
</tr>
<tr>
<td></td>
<td>Soap\Prebuilt\Multi.exe</td>
</tr>
<tr>
<td></td>
<td>Source code:</td>
</tr>
<tr>
<td></td>
<td>Soap\SingleServiceSample\</td>
</tr>
<tr>
<td></td>
<td>Soap\MultiServiceSample\</td>
</tr>
</tbody>
</table>
Configuring the Test Applications

Before you run a test application, you must edit its application settings file. The following table describes all of the configuration fields that you can use in this file.

Table 33 Fields in the Settings File

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Required/Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cybs.connectionLimit</code></td>
<td>Maximum number of allowed concurrent connections between the client and CyberSource server. For more information on this field and alternate ways to set the connection limits, see "Setting the Connection Limit," page 162.</td>
<td>Optional</td>
</tr>
<tr>
<td><code>cybs.keysDirectory</code></td>
<td>Directory that contains the pkcs12 security key file, for example: c:\keys\</td>
<td>Required</td>
</tr>
<tr>
<td><code>cybs.merchantID</code></td>
<td>Your CyberSource merchant ID. You can override this value by providing the merchantID field in the request itself.</td>
<td>Optional</td>
</tr>
</tbody>
</table>
| `cybs.sendToProduction` | Flag that indicates whether the transactions for this merchant should be sent to the production server. Use one of these values:
 - `false`: Do not send to the production server; send to the test server (default setting).
 - `true`: Send to the production server.
 Note Make sure that if your merchant ID is configured to use the test mode, you send requests to the test server. | Required |
| `cybs.keyFilename` | Name of the security key file name for the merchant in the format `<security_key_filename>.p12`. | Optional |
| `cybs.serverURL` | Alternate server URL to use. For more information, see "Configuring Your Settings for Multiple Merchants," page 125. Give the complete URL because it will be used exactly as you specify. | Optional |
Table 33 Fields in the Settings File (Continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Required/Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>cybs.enableLog</td>
<td>Flag directing the client to log transactions and errors. Possible values:</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>■ false: Do not enable logging (default setting).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ true: Enable logging.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Important Logging can cause very large log files to accumulate. Therefore, CyberSource recommends that you use logging only when troubleshooting problems. To comply with all Payment Card Industry (PCI) and Payment Application (PA) Data Security Standards regarding the storage of credit card and card verification number data, the logs that are generated contain only masked credit card and card verification number data (CVV, CVC2, CVV2, CID, CVN). Follow these guidelines:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Use debugging temporarily for diagnostic purposes only.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ If possible, use debugging only with test credit card numbers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Never store clear text card verification numbers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Delete the log files as soon as you no longer need them.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Never send email to CyberSource containing personal and account information, such as customers’ names, addresses, card or check account numbers, and card verification numbers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For more information about PCI and PABP requirements, see www.visa.com/cisp.</td>
<td></td>
</tr>
<tr>
<td>cybs.logDirectory</td>
<td>Directory to which to write the log file. Note that the client will not create this directory for you; you must specify an existing directory. The client includes a logs directory that you can use. Include the path, for example: c:\simapi-net-2.0.0\logs.</td>
<td>Required if cybs.enableLog is true</td>
</tr>
<tr>
<td>cybs.logFilename</td>
<td>Name of the log file. The client uses cybs.log by default.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.logMaximumSize</td>
<td>Maximum size in megabytes for the log file. The default value is 10. When the log file reaches the specified size, it is archived into cybs.log.yyyyymmdd:hhmmsxxx and a new log file is started. The xxxx indicates milliseconds.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.timeout</td>
<td>Length of time-out in seconds. The default is 130.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.proxyURL</td>
<td>URL of a proxy server, for example: https://proxy.example.com:4909</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.proxyUser</td>
<td>User name for the proxy server.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.proxyPassword</td>
<td>Password for the proxy server.</td>
<td>Optional</td>
</tr>
</tbody>
</table>
To test applications:

Step 1 Decide which test application you want to run.
For example, you could decide to run Single.exe.

Step 2 Using a text editor, open the settings file for the test application.
The settings file has the same name as the test application, with the extension config
appended to the name (for example, Single.exe.config).

Step 3 Find the cybs.merchantID field and change its value to your CyberSource merchant ID.
For example, if your merchant ID is widgetsinc:

```xml
<add key="cybs.merchantID" value="widgetsinc"/>
```

Step 4 Find the cybs.keysDirectory field and change its value to the directory that contains
your security key.
For example, if your key is in c:\keys:

```xml
<add key="cybs.keysDirectory" value="c:\keys"/>
```

Step 5 Edit other fields as necessary. See Table 33, page 123 for a complete list.

Step 6 Save and close the settings file.

Configuring Your Settings for Multiple Merchants

If you have multiple merchant IDs, or if you are a reseller handling multiple merchants, you
can configure the settings to allow different configurations for different merchant IDs.

To specify the settings for a specific merchant, prefix all settings, except for
cybs.merchantID and the cybs.proxy*, with <merchantID>.

The cybs.proxy* wildcard refers to the proxyURL, proxyUser, proxyPassword
settings.

Example You have a new merchant with merchant ID of NewMerchant. To send
only test transactions for this merchant, you can set all requests for
NewMerchant to go to the test server:

```xml
<add key="cybs.NewMerchant.sendToProduction" value="false"/>
<add key="cybs.sendToProduction" value="true"/>
```

With the second line of the example, the client will send all other requests to the
production server.
Running the Test Applications

To run test applications:

Step 1 Open a Windows command-line shell.
Step 2 Change to the directory where the test application is located.
Step 3 Type the name of the test application, then press Enter.

The test application requests an CyberSource service, interprets the reply, and prints information about the result. If you receive a .NET exception, use the error message to debug the problem.

Deploying the Client to Another Computer

To deploy the client to another computer without running the installer provided by CyberSource, you must include all the files from the lib directory in your custom installer.

Then, you must register the CybsWSSecurity.dll either in your installation script or on the command prompt.

To register CybsWSSecurity.dll:

Step 1 Open a command prompt.
Step 2 Go to the directory where you installed the client files.
Step 3 Type the following:

```
regsvr32 CybsWSSecurity.dll
```

The client is now ready to be used on the machine.
Chapter 4 .NET 1.1 Client

Going Live

When you complete all of your system testing and are ready to accept real transactions from your customers, your deployment is ready to go live.

After your deployment goes live, use real card numbers and other data to test every card type you support. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Process an authorization, then capture the authorization, and later refund the money. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.

CyberSource Essentials Merchants

If you use CyberSource Essentials services, you can use the Business Center site to go live. For a description of the process of going live, see the “Steps for Getting Started” section in Getting Started with CyberSource Essentials.

You must also configure your client so that it sends transactions to the production server and not the test server. See the description of the configuration field “cybs. sendToProduction,” page 123.

CyberSource Advanced Merchants

If you use CyberSource Advanced services, see the “Steps for Getting Started” chapter in Getting Started with CyberSource Advanced for information about going live.

When your deployment goes live, your CyberSource account is updated so that you can send transactions to the CyberSource production server. If you have not already done so, you must provide your banking information to CyberSource so that your processor can deposit funds to your merchant bank account.

After CyberSource confirms that your account is live, make sure that you update your system so that it can send requests to the production server (ics2wsa.ic3.com) using your security key for the production environment. The test server (ics2wstesta.ic3.com) cannot be used for real transactions. For more information about sending transactions to the production server, see the description of the configuration field “cybs. sendToProduction,” page 123.
Chapter 4 .NET 1.1 Client

Updating the Client to Use a Later API Version

CyberSource periodically updates the Simple Order API. You can update your existing client to work with the new API version. Go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor for a list of the available API versions.

Alternately, if a new client is available that works with the later API version, you can download that new client.

Note

The new client may have new functionality unrelated to the changes in the API. Read the release notes in the CHANGES file to determine if the new client contains new functionality that you want to use.

Name-Value Pair and SOAP Client Variations

To update the client to use a new API when using name-value pair and SOAP client variations:

Step 1 Depending on whether you use name-value pairs or SOAP, load nvp11.sln or soap11.sln into Visual Studio.NET.

Step 2 Inside Visual Studio.NET, enter the URL of the new WSDL file in the "Web Reference URL" of the "CyberSourceWS" web reference. This generates a new Reference.cs in the Web References\CyberSourceWS directory.

Step 4 Update the constructor so that it accepts the parameter "string url" and replace the hard-coded URL assigned to "this.URL" with this parameter. For example:

 // for nvp client
 public NVPTransactionProcessor(string url) {
 this.Url = url;
 }

 // for soap client
 public TransactionProcessor(string url) {
 this.Url = url;
 }

Note

The new client may have new functionality unrelated to the changes in the API. Read the release notes in the CHANGES file to determine if the new client contains new functionality that you want to use.
Step 5 Build the solution.

Your client can use the new version of the API.

XML Client

Updating the client is unnecessary. Start using the new namespace URI in your input XML documents. The client automatically uses the specified version.

Using Name-Value Pairs

This section explains how to request CyberSource services by using name-value pairs.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server

The CyberSource servers do not support persistent HTTP connections.

- Processes the reply information

The instructions in this section explain how to write C# programs that request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Sample Code

The code in this section’s examples is incomplete. For complete sample programs, see the source code in the client’s NVP\SingleServiceSample and NVP\MultiServiceSample directories.
Creating and Sending the Request
To use any CyberSource service, you must create and send a request that includes the required information for that service.

The example developed in the following sections shows basic code for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

Creating a New Visual Studio .NET Project
To get started, create a new project in Visual Studio .NET, and add a reference to the client library, NVPClient.dll, which is located in the client installation directory. You must also add a reference to the library System.Web.Services.dll, which is part of the .NET Framework.

Importing the Client Classes
In the code for your application, add the following import statements:

```csharp
using CyberSource.NameValuePair;
using System;
using System.Collections;
using System.Configuration;
using System.Net;
```

Creating an Empty Request
You next create a hashtable that holds the request fields:

```csharp
Hashtable request = new Hashtable();
```

Adding the Merchant ID
You next optionally add your CyberSource merchant ID to the request:

```csharp
request.Add( "merchantID", "infodev" );
```

This value overrides any value you set with the merchantID configuration setting (see Table 33, page 123).
Adding Services to the Request

You next indicate the service that you want to use by adding a field to the request. For example, to request a credit card authorization:

```csharp
request.Add( "ccAuthService_run", "true" );
```

Requesting a Sale

You can request multiple services by adding additional fields to the request. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (also referred to as a “sale”):

```csharp
request.Add( "ccAuthService_run", "true" );
request.Add( "ccCaptureService_run", "true" );
```

Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. If you request multiple services and they share common fields, you must add the field once only.

```csharp
request.Add( "billTo_firstName", "Jane" );
request.Add( "billTo_lastName", "Smith" );
request.Add( "card_accountNumber", "4111111111111111" );
request.Add( "item_0_unitPrice", "29.95" );
```

The example above shows only a partial list of the fields you must send. Refer to “Related Documents,” page 21 for information about the guides that list all of the fields for the services that you are requesting.
Sending the Request

You next send the request to CyberSource, store the reply in a new hashtable, and catch several exceptions that you might receive:

```csharp
try {
    Hashtable reply = Client.RunTransaction(request);
    SaveOrderState();

    // "Using the Decision and Reason Code," page 135 describes the
    // ProcessReply method.
    ProcessReply(reply);
} catch (SignException se) {
    SaveOrderState();
    Console.WriteLine(se.ToString());
} catch (SoapHeaderException she) {
    SaveOrderState();
    Console.WriteLine(she.ToString());
} catch (SoapBodyException sbe) {
    SaveOrderState();
    /*
    * Some types of SoapBodyException indicate that the transaction may
    * have been completed by CyberSource. The sample code shows how to
    * identify these exceptions. If you receive such an exception, and
    * your request included a payment service, you should use the
    * CyberSource transaction search screens to determine whether the
    * transaction was processed.
    */
    Console.WriteLine(sbe.ToString());
} catch (WebException we) {
    SaveOrderState();
    /*
    * Some types of WebException indicate that the transaction may
    * have been completed by CyberSource. The sample code shows how to
    * identify these exceptions. If you receive such an exception, and
    * your request included a payment service, you should use the
    * CyberSource transaction search screens to determine whether the
    * transaction was processed.
    */
    Console.WriteLine(we.ToString());
}
```
In the previous example, when an exception occurs, the exception is printed to the console. Your web store should also display a message to the customer indicating that you were unable to process the order. The sample code for the name-value pair client shows you how to provide feedback to the customer.

Also, if the transaction fails, and the request did not include any payment services, you may be able to resend the transaction. The sample code for the name-value pair client shows you how to do this.

Interpreting the Reply

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Important Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.
The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - ACCEPT if the request succeeded
 - REJECT if one or more of the services in the request was declined
 - REVIEW if you use CyberSource Decision Manager and it flags the order for review. See "For CyberSource Advanced Merchants: Handling Decision Manager Reviews," page 137 for more information.
 - ERROR if there was a system error. See "Retrying When System Errors Occur," page 139 for important information about handling retries in the case of system errors.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

Important

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.
Using the Decision and Reason Code

The following example shows how you can use the decision and the reason code to display an appropriate message to your customer.

```csharp
private static bool ProcessReply( Hashtable reply ) {
    string template = GetTemplate(
        ((string)reply["decision"]).ToUpper() );
    string content = GetContent( reply );

    // This example writes the message to the console. Choose an
    // appropriate display method for your own application.
    Console.WriteLine( template, content );
}

private static string GetTemplate( string decision ) {
    // Retrieves the text that corresponds to the decision.
    if ("ACCEPT".Equals( decision )) {
        return( "The order succeeded.{0}" );
    }
    if ("REJECT".Equals( decision )) {
        return( "Your order was not approved.{0}" );
    }

    // ERROR, or an unknown decision
    return( "Your order could not be completed at this time.{0}"
        + "\nPlease try again later." );
}

private static string GetContent( Hashtable reply ) {
    /*
    * Uses the reason code to retrieve more details to add to the
    * template.
    *
    * The messages returned in this example are meant to demonstrate
    * how to retrieve the reply fields. Your application should
    * display user-friendly messages.
    */
    int reasonCode = int.Parse( (string) reply["reasonCode"] );
    switch (reasonCode) {
        // Success
        case 100:
            return( "\nRequest ID: " + reply["requestID"] );
        // Missing field or fields
        case 101:
            return( "\nThe following required fields are missing: " +
                EnumerateValues( reply, "missingField" ) );
    }
}
```
// Invalid field or fields
case 102:
 return("\nThe following fields are invalid: " +
 EnumerateValues(reply, "invalidField"));

// Insufficient funds
case 204:
 return("\nInsufficient funds in the account. Please use a " +
 "different card or select another form of payment.");

// Add additional reason codes here that you must handle
// more specifically.
default:
 // For all other reason codes (for example, unrecognized reason
 // codes, or codes that do not require special handling),
 // return an empty string.
 return(String.Empty);

private static string EnumerateValues(Hashtable reply,
 string fieldName) {
 string val = "";
 for (int i = 0; val != null; ++i) {
 val = (string) reply[fieldName + "_" + i];
 if (val != null) {
 sb.Append(val + "\n");
 }
 }

 return(sb.ToString());
}
For CyberSource Advanced Merchants: Handling Decision Manager Reviews

The information in this section applies only to CyberSource Advanced merchants.

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the `businessRules_ignoreAVSResult` field to "true" in your combined authorization and capture request:

```java
request.put( "businessRules_ignoreAVSResult", "true" );
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.
- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.

Creating an Application Settings File

After you finish writing code for your integration, you must create an application settings file. This file must contain, at a minimum, the following information:

- The directory that contains your security key
- The location of the CyberSource server

See Table 33, "Fields in the Settings File" for a complete list of settings.

You can use the settings files that come with the sample applications as a starting point for your own settings file. See "Configuring the Test Applications," page 123 for more information.
Using XML

This section explains how to request CyberSource services by using XML.

Requesting CyberSource Services

To request CyberSource services, write code that:
- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server
- Processes the reply information

Important

The CyberSource servers do not support persistent HTTP connections.

The instructions in this section explain how to write C# programs that request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Creating a Request Document

The XML client allows you to create an XML request document using any application, then send the request to CyberSource. For example, if you have a customer relationship management (CRM) system that uses XML to communicate with other systems, you can use the CRM system to generate request documents.

The request document must validate against the XML schema for CyberSource transactions. To view the schema, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor and look at the \xsd file for the version of the Simple Order API you are using.

Important

Make sure that the elements in your document appear in the correct order. If they do not, your document will not validate, and your request will fail.
The following example shows a basic XML document for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

Note

The XML document in this example is incomplete. For complete examples, see the documents in the `Xml\SingleServiceSample\` and `Xml\MultiServiceSample\` directories.

Creating an Empty Request

Add the XML declaration and the document’s root element:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.17">
</requestMessage>
```

When you construct a request, you must indicate the correct namespace for the elements, and the namespace must use the same API version that you have configured the client to use (see "Updating the Client to Use a Later API Version," page 128). For example, if you have configured the client to use version 1.17, the namespace must be `urn:schemas-cybersource-com:transaction-data-1.17`.

Note

The XML document that you receive in the reply always uses a prefix of `c:` (for example, `xmlns:c="urn:schemas-cybersource-com:transaction-data-1.17"`). Make sure you use an XML parser that supports namespaces.

Adding the Merchant ID

Optionally, you can add the CyberSource merchant ID to the request:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.17">
  <merchantID>infodev</merchantID>
</requestMessage>
```
Adding Services to the Request

You next indicate the service that you want to use by creating an element for that service in the request, then setting the element's run attribute to true. For example, to request a credit card authorization:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.15">
  <merchantID>infodev</merchantID>
  <ccAuthService run="true"/>
</requestMessage>
```

Requesting a Sale

You can request multiple services by creating additional elements. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (referred to as a “sale”):

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.17">
  <merchantID>infodev</merchantID>
  <ccAuthService run="true"/>
  <ccCaptureService run="true"/>
</requestMessage>
```
Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. Most fields are child elements of container elements; for example, a `<card>` element contains the customer’s credit card information.

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.15">
  <merchantID>infodev</merchantID>
  <billTo>
    <firstName>Jane</firstName>
    <lastName>Smith</lastName>
  </billTo>
  <item id="0">
    <card>
      <accountNumber>4111111111111111</accountNumber>
      <ccAuthService run="true"/>
    </card>
    <unitPrice>29.95</unitPrice>
  </item>
</requestMessage>
```

The previous example shows only a partial list of the fields you must send. Refer to “Related Documents,” page 21 for information about the guides that list all of the fields for the services that you are requesting.

Sending the Request

Once you have created an XML request document, you can use a .NET application to send the request to CyberSource. The example that follows is written in C#.

Note
The code in this section’s examples is incomplete. For complete sample programs, see the source code in the client’s `Xml\SingleServiceSample\` and `Xml\MultiServiceSample\` directories.

Creating a New Visual Studio .NET Project

To get started, create a new project in Visual Studio .NET, and add a reference to the client library, `XmlClient.dll`, which is located in the client’s installation directory.
Chapter 4 .NET 1.1 Client

Importing the Client Classes
In the code for your application, add the following import statements:

```csharp
using CyberSource.Xml;
using System;
using System.Net;
using System.Xml;
```

Sending the Request
You next read the XML request document, send the request to CyberSource, store the reply in a new XmlDocument object, and catch several exceptions that you might receive:

```csharp
try {
    XmlDocument request = new XmlDocument();
    request.Load( "MyXmlDocument.xml" );

    XmlDocument reply = Client.RunTransaction( request );
    SaveOrderState();
    // "Using the Decision and Reason Code," page 135 describes the
    // ProcessReply method.
    ProcessReply( reply );
    catch (SignException se) {
        SaveOrderState();
        Console.WriteLine( se.ToString() );
    }
    catch (FaultException fe) {
        SaveOrderState();
        /*
         * Some types of FaultException indicate that the transaction may
         * have been completed by CyberSource. The sample code shows how to
         * identify these exceptions. If you receive such an exception, and
         * your request included a payment service, you should use the
         * CyberSource transaction search screens to determine whether the
         * transaction was processed.
         */
        Console.WriteLine( fe.ToString() );
    }
    catch (WebException we) {
        SaveOrderState();
        /*
         * Some types of WebException indicate that the transaction may
         * have been completed by CyberSource. The sample code shows how to
         * identify these exceptions. If you receive such an exception, and
         * your request included a payment service, you should use the
         * CyberSource transaction search screens to determine whether the
         * transaction was processed.
         */
        Console.WriteLine( we.ToString() );
    }
```
In the preceding example, when an exception occurs, the exception is printed to the console. Your web store should also display a message to the customer indicating that you were unable to process the order. The sample code for the XML client shows you how to provide feedback to the customer.

Also, if the transaction fails, and the request did not include any payment services, you may be able to resend the transaction. The sample code for the XML client shows you how to do this.

Interpreting the Reply

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Important

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.
Chapter 4 .NET 1.1 Client

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - **ACCEPT** if the request succeeded
 - **REJECT** if one or more of the services in the request was declined
 - **REVIEW** if you use CyberSource Decision Manager and it flags the order for review. See "For CyberSource Advanced Merchants: Handling Decision Manager Reviews," page 149 for more information.
 - **ERROR** if there was a system error. See "Retrying When System Errors Occur," page 151 for important information about handling retries in the case of system errors.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

Important

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.
Using the Decision and Reason Code

The following example shows how you can use the decision and the reason code to display an appropriate message to your customer.

```csharp
private static bool ProcessReply( XmlDocument reply ) {
    // The following code allows you to use XPath with the CyberSource
    // schema, which uses a non-empty default namespace.
    XmlNamespaceManager nsmgr = new XmlNamespaceManager( reply.NameTable );
    nsmgr.AddNamespace( "cybs", Client.CYBS_NAMESPACE );

    XmlNode replyMessage
        = reply.SelectSingleNode( "cybs:replyMessage", nsmgr );
    string decision = replyMessage.SelectSingleNode(
        "cybs:decision/text()", nsmgr ).Value;
    string template = GetTemplate( decision.ToUpper() );
    string content = GetContent( replyMessage, nsmgr );

    // This example writes the message to the console. Choose an
    // appropriate display method for your own application.
    Console.WriteLine( template, content );
}

private static string GetTemplate( string decision ) {
    // Retrieves the text that corresponds to the decision.
    if ("ACCEPT".Equals( decision )) {
        return("The order succeeded.\n\n\n") +
    }

    if ("REJECT".Equals( decision )) {
        return("Your order was not approved.\n\n\n") +
    }

    // ERROR, or an unknown decision
    return("Your order could not be completed at this time.\n\n\nPlease try again later.\n\n") +
}

private static string GetContent( XmlNode replyMessage, XmlNamespaceManager nsmgr ) {
    /*
    * Uses the reason code to retrieve more details to add to the
    * template.
    *
    * The messages returned in this example are meant to demonstrate
    * how to retrieve the reply fields. Your application should
    * display user-friendly messages.
    */
```
int reasonCode = int.Parse(textVal);
switch (reasonCode) {
 // Success
 case 100:
 return ("\nRequest ID: " + replyMessage.SelectSingleNode("cybs:requestID/text()").Value);
 // Missing field or fields
 case 101:
 return ("\nThe following required fields are missing: " + EnumerateValues(replyMessage.SelectNodes("cybs:missingField/text()").Value));
 // Invalid field or fields
 case 102:
 return ("\nThe following fields are invalid: " + EnumerateValues(replyMessage.SelectNodes("cybs:invalidField/text()").Value));
 // Insufficient funds
 case 204:
 return ("\nInsufficient funds in the account. Please use a " + "different card or select another form of payment.");
 // Add additional reason codes here that you must handle
 // more specifically.
 default:
 // For all other reason codes (for example, unrecognized reason
 // codes, or codes that do not require special handling),
 // return an empty string.
 return (String.Empty);
}

private static string EnumerateValues(XmlNodeList nodes) {
 foreach (XmlNode node in nodes) {
 sb.Append(val + "\n");
 }
 return (sb.ToString());
}
For CyberSource Advanced Merchants: Handling Decision Manager Reviews

The information in this section applies only to CyberSource Advanced merchants.

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the businessRules_ignoreAVSResult field to "true" in your combined authorization and capture request:

```xml
<businessRules>
  <ignoreAVSResult>true</ignoreAVSResult>
</businessRules>
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note

You are charged only for the services that CyberSource performs.
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.

Creating an Application Settings File

After you finish writing code for your integration, you must create an application settings file. This file must contain, at a minimum, the following information:

- The directory that contains your security key
- The location of the CyberSource server

See Table 33, "Fields in the Settings File," on page 123 for a complete list of settings.

You can use the settings files that come with the sample applications as a starting point for your own settings file. See "Configuring the Test Applications," page 123 for more information.
Using SOAP

This section explains how to request CyberSource services by using the SOAP (Simple Object Access Protocol).

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server

The CyberSource servers do not support persistent HTTP connections.

Important

- Processes the reply information

The instructions in this section explain how to write C# programs that request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Sample Code

The code in this section's examples is incomplete. For complete sample programs, see the source code in the client's Soap\SingleServiceSample and Soap\MultiServiceSample directories.

Creating and Sending the Request

To use any CyberSource service, you must create and send a request that includes the required information for that service.

The following example shows basic code for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.
Creating a New Visual Studio .NET Project

To get started, create a new project in Visual Studio .NET, and add a reference to the client library, SoapClient.dll, which is located in the client's installation directory. You must also add a reference to the library System.Web.Services.dll, which is part of the .NET Framework.

Importing the Client Classes

In the code for your application, add the following import statements:

```csharp
using CyberSource.Soap;
using CyberSource.Soap.CyberSourceWS;
using System;
using System.Configuration;
using System.Net;
```

Creating an Empty Request

You next create a RequestMessage object that holds the request fields:

```csharp
RequestMessage request = new RequestMessage();
```

Adding the Merchant ID

You next optionally add your CyberSource merchant ID to the request:

```csharp
request.merchantID = "infodev";
```

This value overrides any value you set with the merchantID configuration setting (see Table 33, “Fields in the Settings File,” on page 123).

Adding Services to the Request

You next indicate the service that you want to use by creating an object for that service in the request, then setting the object's run property to true. For example, to request a credit card authorization:

```csharp
request.ccAuthService = new CCAuthService();
request.ccAuthService.run = "true";
```
Chapter 4 .NET 1.1 Client

Requesting a Sale

You can request multiple services by creating additional objects. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (referred to as a “sale”):

```csharp
request.ccAuthService = new CCAuthService();
request.ccAuthService.run = "true";
request.ccCaptureService = new CCCaptureService();
request.ccCaptureService.run = "true";
```

Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. Most fields are properties of additional objects; for example, a Card object contains the customer’s credit card information.

```csharp
BillTo billTo = new BillTo();
billTo.firstName = "Jane";
billTo.lastName = "Smith";
request.billTo = billTo;

Card card = new Card();
card.accountNumber = "4111111111111111";
request.card = card;

// there is one item in this sample
request.item = new Item[1];
Item item = new Item();
item.id = "0";
item.unitPrice = "29.95";
request.item[0] = item;
```

The preceding example shows only a partial list of the fields you must send. Refer to "Related Documents," page 21 for information about the guides that list all of the fields for the services that you are requesting.
Sending the Request
You next send the request to CyberSource, store the reply in a new `ReplyMessage` object, and handle several exceptions that you might receive.

```csharp
try {
    ReplyMessage reply = Client.RunTransaction( request );
    SaveOrderState();

    // "Using the Decision and Reason Code," page 135 describes the
    // ProcessReply method.
    ProcessReply( reply );
} catch (SignException se) {
    SaveOrderState();
    Console.WriteLine( se.ToString() );
} catch (SoapHeaderException she) {
    SaveOrderState();
    Console.WriteLine( she.ToString() );
} catch (SoapBodyException sbe) {
    SaveOrderState();
    /*
    * Some types of SoapBodyException indicate that the transaction may
    * have been completed by CyberSource. The sample code shows how to
    * identify these exceptions. If you receive such an exception, and
    * your request included a payment service, you should use the
    * CyberSource transaction search screens to determine whether the
    * transaction was processed.
    */
    Console.WriteLine( sbe.ToString() );
} catch (WebException we) {
    SaveOrderState();
    /*
    * Some types of WebException indicate that the transaction may
    * have been completed by CyberSource. The sample code shows how to
    * identify these exceptions. If you receive such an exception, and
    * your request included a payment service, you should use the
    * CyberSource transaction search screens to determine whether the
    * transaction was processed.
    */
    Console.WriteLine( we.ToString() );
}
private static void SaveOrderState() {
    /*
    * This is where you store the order state in your system for
    * post-transaction analysis. Be sure to store the customer
    * information, the values of the reply fields, and the details
    * of any exceptions that occurred.
    */
}
```
In the preceding example, when an exception occurs, the exception is printed to the console. Your web store should also display a message to the customer indicating that you were unable to process the order. The sample code for the SOAP client shows you how to provide feedback to the customer.

Also, if the transaction fails, and the request did not include any payment services, you may be able to resend the transaction. The sample code for the SOAP client shows you how to do this.

Interpreting the Reply

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Important

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - ACCEPT if the request succeeded
 - REJECT if one or more of the services in the request was declined
 - REVIEW if you use CyberSource Decision Manager and it flags the order for review. See "For CyberSource Advanced Merchants: Handling Decision Manager Reviews," page 159 for more information.
 - ERROR if there was a system error. See "Retrying When System Errors Occur," page 161 for important information about handling retries in the case of system errors.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card
authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

Using the Decision and Reason Code

The following example shows how you can use the decision and the reason code to display an appropriate message to your customer.

```csharp
private static bool ProcessReply( ReplyMessage reply ) {
    string template = GetTemplate( reply.decision.ToUpper() );
    string content = GetContent( reply );

    // This example writes the message to the console. Choose an appropriate display method for your own application.
    Console.WriteLine( template, content );
}

private static string GetTemplate( string decision ) {
    // Retrieves the text that corresponds to the decision.
    if ("ACCEPT".Equals( decision )) {
        return( "The order succeeded.{0}" );
    }
    if ("REJECT".Equals( decision )) {
        return( "Your order was not approved.{0}" );
    }

    // ERROR, or an unknown decision
    return( "Your order could not be completed at this time.{0}" + "\nPlease try again later." );
}

private static string GetContent( ReplyMessage reply ) {
    /*
     * Uses the reason code to retrieve more details to add to the template.
     * The messages returned in this example are meant to demonstrate how to retrieve the reply fields. Your application should display user-friendly messages.
     */
    int reasonCode = int.Parse( reply.reasonCode );
```
switch (reasonCode) {

 // Success
 case 100:
 return("\nRequest ID: " + reply.requestID);

 // Missing field or fields
 case 101:
 return("\nThe following required fields are missing: " +
 EnumerateValues(reply.missingField));

 // Invalid field or fields
 case 102:
 return("\nThe following fields are invalid: " +
 EnumerateValues(reply.invalidField));

 // Insufficient funds
 case 204:
 return("\nInsufficient funds in the account. Please use a " +
 "different card or select another form of payment.");

 // Add additional reason codes here that you must handle
 // more specifically.
 default:

 // For all other reason codes (for example, unrecognized reason
 // codes, or codes that do not require special handling),
 // return an empty string.
 return(String.Empty);

} // switch

private static string EnumerateValues(string[] array) {
 foreach (string val in array) {
 sb.Append(val + "\n");
 }
 return(sb.ToString());
} // EnumerateValues
For CyberSource Advanced Merchants: Handling Decision Manager Reviews

The information in this section applies only to CyberSource Advanced merchants.

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the businessRules_ignoreAVSResult field to "true" in your combined authorization and capture request:

```csharp
BusinessRules businessRules = new BusinessRules();
businessRules.ignoreAVSResult = "true";
request.businessRules = businessRules;
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.
- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.

Creating an Application Settings File

After you finish writing code for your integration, you must create an application settings file. This file must contain, at a minimum, the following information:

- The directory that contains your security key
- The location of the CyberSource server

See Table 33, "Fields in the Settings File," on page 123 for a complete list of settings.

You can use the settings files that come with the sample applications as a starting point for your own settings file. See "Configuring the Test Applications," page 123 for more information.
Setting the Connection Limit

This appendix explains how to increase the number of simultaneous connections between the client and CyberSource.

By default, you can create only two simultaneous connections to an HTTP server. By increasing the number of connections, you can avoid a backlog of requests during times of very high transaction volume. Microsoft recommends for the connection limit a value that is 12 times the number of CPUs. For example, if you have two CPUs, you can set the connection limit to 24. To determine the optimum setting for your application, make sure to run performance tests.

Examples

You can increase the number of connections in many ways, for example by using an application- or server-specific configuration file where you can change the setting for a single or for all hosts. The examples below describe briefly some of the methods that you can use to increase connection limits.

cybs.connectionLimit

When set to a value other than -1, the `cybs.connectionLimit` setting in the client increases the limit for the host where you are sending the request by executing these statements on your behalf:

```csharp
ServicePoint sp = ServicePointManager.FindServicePoint(uri);
sp.ConnectionLimit = config.ConnectionLimit;
```

<connectionManagement>

You can set the connection limit by using .NET's `<connectionManagement>` tag. In this example, the connection limit for CyberSource’s test and production hosts is 12 while the limit for all other hosts is 2:

```xml
<system.net>
  <connectionManagement>
    <add address = "https://ics2wstesta.ic3.com" maxconnection = "12" />
    <add address = "https://ics2wsa.ic3.com" maxconnection = "12" />
    <add address = "*" maxconnection = "2" />
  </connectionManagement>
</system.net>
```
DefaultConnectionLimit
You can set the connection limit for all hosts to which your application is connected before a connection is made by using the following line in your start-up code:

```csharp
ServicePointManager.DefaultConnectionLimit = your_value_here;
```

References
For more information on these and other methods to increase the connection limits, see the following Microsoft documentation:

Chapter 5: .NET 2.0 Client

Choosing an API and Client

API Variation

With this client package, you can use any of the three variations of the Simple Order API:

- Name-value pairs, which are simpler to use than XML
- XML, which requires you to create and parse XML documents
- SOAP (Simple Object Access Protocol) 1.1, which provides an object-oriented interface

The test that you run immediately after installing the client uses name-value pairs.

Important

- The .NET 2.0 client for the Simple Order API is supported on 32-bit operating systems only.
- If you are building an application to sell to others, see Appendix A, "Using the Client Application Fields," on page 390. This appendix has a list of API fields you can use in your request that describe the application, its version, and its user. If you use these fields in your request, you can view their values in the Transaction Search Details window of the Business Center.
Client Versions

CyberSource updates the Simple Order API on a regular basis to introduce new API fields and functionality. To identify the latest version of the API, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor.

This represents the version of the server-side code for the CyberSource services.

Note

Starting with version 5.0.0, the version of the Simple Order API client for .NET no longer matches the version of the server API that it uses. See the README file for the correct server API version.

If a new version of the API has been released, but CyberSource has not yet updated the .NET client to use this new version, you can manually update the client to use a different version. See "Updating the Client to Use a Later API Version," page 176.

Basic C# Program Example

The following example shows the primary code required to send a SOAP request for credit card authorization and process the reply. See "Using SOAP," page 200 for more information.

```csharp
using CyberSource.Soap;
using CyberSource.Soap.CyberSourceWS;
using System;
using System.Configuration;
using System.Net;
namespace Sample {
    class Sample {
        static void Main(string[] args) {
            RequestMessage request = new RequestMessage();
            request.merchantID = "infodev";

            // we want to do Credit Card Authorization in this sample
            request.ccAuthService = new CCAuthService();
            request.ccAuthService.run = "true";
```
// add required fields
request.merchantReferenceCode = "14870582705344";
BillTo billTo = new BillTo();
billTo.firstName = "Jane";
billTo.lastName = "Smith";
billTo.street1 = "1295 Charleston Road";
billTo.city = "Mountain View";
billTo.state = "CA";
billTo.postalCode = "94043";
billTo.country = "US";
billTo.email = "jsmith@example.com";
request.billTo = billTo;
Card card = new Card();
card.accountNumber = "4111111111111111";
card.expirationMonth = "12";
card.expirationYear = "2010";
request.card = card;
PurchaseTotals purchaseTotals = new PurchaseTotals();
purchaseTotals.currency = "USD";
request.purchaseTotals = purchaseTotals;

// there is one item in this sample
request.item = new Item[1];
Item item = new Item();
item.id = "0";
item.unitPrice = "29.95";
request.item[0] = item;

// processing the reply for a SOAP transaction.
try {
 ReplyMessage reply = Client.RunTransaction(request);
 catch (SignException se) {
 Console.WriteLine(se.ToString());
 }
 catch (SoapHeaderException she) {
 Console.WriteLine(she.ToString());
 }
 catch (SoapBodyException sbe) {
 Console.WriteLine(sbe.ToString());
 }
 catch (WebException we) {
 Console.WriteLine(we.ToString());
 }
}
Installing and Testing the Client

Minimum System Requirements

- Microsoft Windows 2000 or later
- .NET Framework 2.0 or later
- Microsoft Web Services Enhancements (WSE) 3.0 or later
- Microsoft Visual Studio 2005

Failure to configure your client API host to a unique, public IP address will cause inconsistent transaction results.

The client API request ID algorithm uses a combination of IP address and system time, along with other values. In some architectures this combination might not yield unique identifiers.

Transaction Security Keys

The first thing you must do is create your security key. The client uses the security key to add a digital signature to every request that you send. This signature helps ensure that no one else can use your CyberSource account to process orders. You specify the location of your key when you configure the client.

You must generate two transaction security keys—one for the CyberSource production environment and one for the test environment. For information about generating and using security keys, see Creating and Using Security Keys (PDF | HTML).

You must protect your security key to ensure that your CyberSource account is not compromised.
Installing for the First Time

To install the client for the first time:

Step 1 Go to the client downloads page on the Support Center and download the latest version of the client.

Step 2 Run the downloaded file.

The Simple Order API for .NET Setup Wizard appears.

Step 3 Follow the instructions in the wizard to install the client.

If you use the default installation directory, the client is installed in `c:\simapi-net-2.0-<version>`.

Step 4 Test the client. See "Using the Test Applications," page 170.

The client is installed and tested. You are ready to create your own code for requesting CyberSource services. Finish reading this section, and move on to one of these sections:

- "Using Name-Value Pairs," page 178 if you plan to use name-value pairs
- "Using XML," page 188 if you plan to use XML
- "Using SOAP," page 200 if you plan to use SOAP
Upgrading from a Previous Version

To upgrade your client from a previous version:

Step 1 Follow the previous installation instructions in "Installing for the First Time," page 168.

Step 2 In Visual Studio, remove the reference to the previous client.

Step 3 Add a reference to the new client (CyberSource.Clients.dll).

You have successfully upgraded your client to the new version.

Migrating from .NET Framework 1.x

If you are switching from .NET Framework 1.x and are using a CyberSource Web Services client or CyberSource Simple Order API client, you must use the following migration procedure:

To migrate from a .NET Framework 1.x client to a 2.0 client:

Step 1 Replace the old DLLs with the ones from this package.

Step 2 In your project, remove references to the previous CyberSource DLLs.

Step 3 Add a reference to CyberSource.Clients.dll.

Step 4 In your request code, make the following changes:

a Replace the referenced CyberSource namespaces with this one:

CyberSource.Clients

b If you use the SOAP client, add the following namespace:

CyberSource.Clients.SoapWebReference
Example In C#, with the SOAP client, you now have:

```c
using CyberSource.Clients.
using CyberSource.Clients.SoapWebReference; /* for SOAP client only */
```

```c
Replace Client.RunTransaction with the call appropriate for your API:
```

```c
NVPClient.RunTransaction
XmlClient.RunTransaction
SoapClient.RunTransaction
```

Step 5 To prevent any conflicts with any of your other settings, add the prefix `cybs.` to your previous configuration setting keys.

For example, see Table 34, "Fields in the Settings File," on page 171. Note that the previous configuration setting keys are still supported.

Step 6 Replace the key `cybersourceURL` with `cybs.sendToProduction` and set it to `true` or `false` (or `0` or `1`) as appropriate.

For a list of new and modified configuration settings, see Table 34, "Fields in the Settings File," on page 171. Use the sample applications provided as reference during the migration.

Using the Test Applications

Each type of client variation—name-value pair, XML, and SOAP—includes a pre-compiled test application. You can use these test applications to ensure that the client was installed correctly. The applications request both credit card authorization and capture.

The test applications and their source code are installed in the `samples` directory. The `bin` subdirectory contains the pre-compiled binaries. The `src` subdirectory contains the source code and Visual Studio project files.

Configuring the Test Applications

Before you run a test application, you must edit its application settings file. The following table describes all the configuration fields that you can use in this file.

| Note | Configuration settings supported by the latest 1.x.x version are still supported. However, CyberSource recommends that you use the following new settings for this and future versions. |
Table 34 Fields in the Settings File

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Required/Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>cybs.connectionLimit</td>
<td>Maximum number of allowed concurrent connections between the client and CyberSource’s server. For more information on this field and alternate ways to set the connection limits, see "Setting the Connection Limit," page 210.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.keysDirectory</td>
<td>Directory that contains the pkcs12 security key file. For example: c:\keys\</td>
<td>Required</td>
</tr>
<tr>
<td>cybs.merchantID</td>
<td>Your CyberSource merchant ID. You can override this value by providing the merchantID field in the request itself. The merchant ID is case sensitive.</td>
<td>Optional</td>
</tr>
</tbody>
</table>
| cybs.sendToProduction| Flag that indicates whether the transactions for this merchant should be sent to the production server. Use one of these values:
 - false: Do not send to the production server; send to the test server (default setting).
 - true: Send to the production server.
 Note Make sure that if your merchant ID is configured to use the test mode, you send requests to the test server. | Required |
| cybs.keyFilename | Name of the security key file name for the merchant in the format <security_key_filename>.p12. | Optional |
| cybs.serverURL | Alternate server URL to use. For more information, see "Configuring Your Settings for Multiple Merchants," page 173. Give the complete URL because it will be used exactly as you specify. | Optional |
Table 34 Fields in the Settings File (Continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Required/Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>cybs.enableLog</td>
<td>Flag directing the client to log transactions and errors. Use one of these values:
 - false: Do not enable logging (default setting).
 - true: Enable logging.</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>Important Logging can cause very large log files to accumulate. Therefore, CyberSource recommends that you use logging only when troubleshooting problems. To comply with all Payment Card Industry (PCI) and Payment Application (PA) Data Security Standards regarding the storage of credit card and card verification number data, the logs that are generated contain only masked credit card and card verification number data (CVV, CVC2, CVV2, CID, CVN).
 Follow these guidelines:
 - Use debugging temporarily for diagnostic purposes only.
 - If possible, use debugging only with test credit card numbers.
 - Never store clear text card verification numbers.
 - Never delete the log files as soon as you no longer need them.
 - Never send email to CyberSource containing personal and account information, such as customers’ names, addresses, card or check account numbers, and card verification numbers. For more information about PCI and PABP requirements, see www.visa.com/cisp.</td>
<td></td>
</tr>
<tr>
<td>cybs.logDirectory</td>
<td>Directory to which to write the log file. Note that the client will not create this directory for you; you must specify an existing directory. The client includes a <code>logs</code> directory that you can use. Include the path. For example: <code>c:\simapi-net-2.0.0\logs</code>.</td>
<td>Required if <code>cybs.enableLog</code> is true</td>
</tr>
<tr>
<td>cybs.logFilename</td>
<td>Name of the log file. The client uses <code>cybs.log</code> by default.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.logMaximumSize</td>
<td>Maximum size in megabytes for the log file. The default value is 10. When the log file reaches the specified size, it is archived into <code>cybs.log.<yyyymmddd\hmmssxxx></code> and a new log file is started. The <code>xxx</code> indicates milliseconds.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.timeout</td>
<td>Length of time-out in seconds. The default is 130.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.proxyURL</td>
<td>URL of a proxy server. For example: <code>https://proxy.example.com:4909</code></td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.proxyUser</td>
<td>User name for the proxy server.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.proxyPassword</td>
<td>Password for the proxy server.</td>
<td>Optional</td>
</tr>
</tbody>
</table>
To test applications:

Step 1 Decide which test application you want to run, such as *SoapSample.exe*.

Step 2 Using a text editor, open the settings file for the test application. The settings file has the same name as the test application, with the extension `config` appended to the name. For example, *SoapSample.exe.config*.

Step 3 Find the `cybs.merchantID` field and change its value to your CyberSource merchant ID. For example, if your merchant ID is *widgetsinc*, change the field to `<add key="cybs.merchantID" value="widgetsinc"/>`. The merchant ID is case sensitive.

Step 4 Find the `cybs.keysDirectory` field and change its value to the directory that contains your security key. For example, if your key is in `c:\keys\`, change the field to `<add key="cybs.keysDirectory" value="c:\keys\"/>`.

Step 5 Edit other fields as necessary. See Table 34, "Fields in the Settings File," on page 171 for a complete list.

Step 6 Save and close the settings file.

Configuring Your Settings for Multiple Merchants

If you have multiple merchant IDs, or if you are a reseller handling multiple merchants, you can configure the settings to allow different configurations for different merchant IDs.

To specify the settings for a specific merchant, prefix all settings, except for `cybs.merchantID` and the `cybs.proxy*`, with `<merchantID>`. The `cybs.proxy*` wildcard refers to the `proxyURL`, `proxyUser`, `proxyPassword` settings.

Example You have a new merchant with merchant ID of *NewMerchant*. To send only test transactions for this merchant, you can set all requests for *NewMerchant* to go to the test server:

```
<add key="cybs.NewMerchant.sendToProduction" value="false"/>
<add key="cybs.sendToProduction" value="true"/>
```

With the second line of the example, the client will send all other requests to the production server.
Running the Test Applications

To run test applications:

Step 1 Open a Windows command-line shell.

Step 2 Change to the directory where the test application is located.

Step 3 Type the name of the test application, then press Enter.

The test application requests an CyberSource service, interprets the reply, and prints information about the result. If you receive a .NET exception, use the error message to debug the problem.

Deploying the Client to Another Computer

To deploy the client to another computer without running the installer provided by CyberSource, you must include all the files from the `lib` directory in your custom installer.

Then, you must register `CybsWSSecurity.dll` either in your installation script or on the command prompt.

To register CybsWSSecurity.dll:

Step 1 Open a command prompt.

Step 2 Go to the directory where you installed the client files.

Step 3 Type this line: `regsvr32 CybsWSSecurity.dll`

The client is now ready to be used on the computer.
Going Live
When you complete all of your system testing and are ready to accept real transactions from consumers, your deployment is ready to go live.

After your deployment goes live, use real card numbers and other data to test every card type you support. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Process an authorization, then capture the authorization, and later refund the money. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.

CyberSource Essentials Merchants
If you use CyberSource Essentials services, you can use the Business Center site to go live. For a description of the process of going live, see the “Steps for Getting Started” section in Getting Started with CyberSource Essentials.

You must also configure your client so that it sends transactions to the production server and not the test server. See the description of the configuration setting "cybs. sendToProduction," page 171.

CyberSource Advanced Merchants
If you use CyberSource Advanced services, see the “Steps for Getting Started” chapter in Getting Started with CyberSource Advanced for information about going live.

When your deployment goes live, your CyberSource account is updated so that you can send transactions to the CyberSource production server. If you have not already done so, you must provide your banking information to CyberSource so that your processor can deposit funds to your merchant bank account.

After CyberSource confirms that your account is live, make sure that you update your system so that it can send requests to the production server (ics2wsa.ic3.com) using your security key for the production environment. The test server (ics2wstest.ic3.com) cannot be used for real transactions. For more information about sending transactions to the production server, see the description of the configuration setting "cybs. sendToProduction," page 171.

Note
After your deployment goes live, use real card numbers and other data to test every card type you support. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Process an authorization, then capture the authorization, and later refund the money. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.

Important
You must also configure your client so that it sends transactions to the production server and not the test server. See the description of the configuration setting "cybs. sendToProduction," page 171.
Updating the Client to Use a Later API Version

CyberSource periodically updates the Simple Order API. You can update your existing client to work with the new API version. For a list of the available API versions, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor/.

Alternately, if a new client is available that works with the later API version, you can download that new client.

Name-Value Pair Client

To update a name-value pair client:

Step 1 Load src\CyberSource.Clients.sln in Visual Studio 2005.

Step 2 Enter the URL of the new WSDL file in the Web Reference URL of the NVPWebReference web reference. This can be done automatically by right-clicking NVPWebReference and choosing Update Web Reference. After a successful update, a new Reference.cs file is generated in the Web References\NVPWebReference directory.

Step 3 Load the newly-generated Reference.cs and look for the constructor for NVPTransactionProcessWse.

Step 4 Update the constructor so that it accepts the parameter string url and replace the hard-coded URL assigned to this.URL with this parameter. For example:

```csharp
public NVPTransactionProcessorWse(string url) {
    this.Url = url;
}
```

Step 5 In the Project Properties, switch to the Signing tab and choose your own strong name key file or clear Sign the assembly if you do not want to sign the assembly. To generate your own key file, use the Strong Name tool (sn.exe) that is included with the .NET Framework SDK.

Step 6 Build the Release configuration. If this results in build errors related to NVPTransactionProcessorWse, do the following:

a Rerun the WSE 3.0 installer. You can do this by using Add/Remove Programs.

b In the installer, select modify and install the Visual Studio Tools option.

c Restart Visual Studio.

d Return to step 1.

The new client may have new functionality unrelated to the changes in the API. Read the release notes in the CHANGES file to determine if the new client contains new functionality that you want to use.
Step 7 Save a copy of the original CyberSource.Clients.dll and then replace it with the newly built CyberSource.Clients.dll.

SOAP Client

To update a SOAP client:

Step 1 Load src\CyberSource.Clients.sln in Visual Studio 2005.

Step 2 Enter the URL of the new WSDL file in the Web Reference URL of the SoapWebReference web reference. This can be done automatically by right-clicking SoapWebReference and selecting Update Web Reference. After a successful update, a new Reference.cs file is generated in the Web References\SoapWebReference directory.

Step 3 Load the newly-generated Reference.cs and look for the constructor for TransactionProcessWse.

Step 4 Update the constructor so that it accepts the parameter string url and replace the hard-coded URL assigned to this.URL with this parameter. For example:

```csharp
public TransactionProcessorWse(string url) {
    this.Url = url;
}
```

Step 5 In the Project Properties, switch to the Signing tab and choose your own strong name key file or uncheck the Sign the assembly check box if you do not want to sign the assembly. To generate your own key file, use the Strong Name tool (sn.exe) that is included with the .NET Framework SDK.

Step 6 Build the Release configuration. If this results in build errors related to TransactionProcessorWse, do the following:

a. Rerun the WSE 3.0 installer. You can do this by using Add/Remove Programs.

b. In the installer, select modify and install the Visual Studio Tools option.

c. Restart Visual Studio.

d. Return to step 1.

Step 7 Save a copy of the original CyberSource.Clients.dll and then replace it with the newly built CyberSource.Clients.dll.
XML Client
Update the client is unnecessary. Start using the new namespace URI in your input XML documents. The client automatically uses the specified version.

Using Name-Value Pairs
This section explains how to request CyberSource services by using name-value pairs.

Requesting CyberSource Services
To request CyberSource services, write code that:
- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server
- Processes the reply information

The CyberSource servers do not support persistent HTTP connections.

The instructions in this section explain how to write C# programs that request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Creating and Sending the Request
To use any CyberSource service, you must create and send a request that includes the required information for that service.

The example developed in the following sections shows basic code for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

The code in this section's examples is incomplete. For complete sample programs, see the source code in the client's samples\src\nvp directory.
Creating a New Visual Studio .NET Project

To get started, create a new project in Visual Studio .NET, and add a reference to the client library, CyberSource.Clients.dll, which is located in the client's lib directory. You must also add a reference to the library System.Web.Services.dll, which is part of the .NET Framework.

Importing the Client Classes

In the code for your application, add the following import statements:

```csharp
using CyberSource.Clients;
using System;
using System.Collections;
using System.Configuration;
using System.Net;
```

Creating an Empty Request

You next create a hashtable that holds the request fields:

```csharp
Hashtable request = new Hashtable();
```

Adding the Merchant ID

You next optionally add your CyberSource merchant ID to the request:

```csharp
request.Add( "merchantID", "infodev" );
```

This value overrides any value you set with the merchantID configuration setting (see Table 34, "Fields in the Settings File," on page 171). The merchant ID is case sensitive.

Adding Services to the Request

You next indicate the service that you want to use by adding a field to the request. For example, to request a credit card authorization:

```csharp
request.Add( "ccAuthService_run", "true" );
```
Requesting a Sale

You can request multiple services by adding additional fields to the request. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (also referred to as a “sale”):

```csharp
request.Add( "ccAuthService_run", "true" );
request.Add( "ccCaptureService_run", "true" );
```

Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. If you request multiple services and they share common fields, you must add the field once only.

```csharp
request.Add( "billTo_firstName", "Jane" );
request.Add( "billTo_lastName", "Smith" );
request.Add( "card_accountNumber", "4111111111111111" );
request.Add( "item_0_unitPrice", "29.95" );
```

The previous example shows only a partial list of the fields you must send. Refer to "Requesting CyberSource Services," page 178 for information about the guides that list all of the fields for the services that you are requesting.
Sending the Request

You next send the request to CyberSource, store the reply in a new hash table, and catch several exceptions that you might receive:

```csharp
try {
    Hashtable reply = NVPClient.RunTransaction( request );
    SaveOrderState();
    // "Using the Decision and Reason Code," page 183 describes the ProcessReply
    // method.
    ProcessReply( reply );
} catch (SignException se) {
    SaveOrderState();
    Console.WriteLine( se.ToString() );
} catch (SoapHeaderException she) {
    SaveOrderState();
    Console.WriteLine( she.ToString() );
} catch (SoapBodyException sbe) {
    SaveOrderState();
    /*
     * Some types of SoapBodyException indicate that the transaction may have been
     * completed by CyberSource. The sample code shows how to identify these
     * exceptions. If you receive such an exception, and your request included a
     * payment service, you should use the CyberSource transaction search screens to
     * determine whether the transaction was processed.
     */
    Console.WriteLine( sbe.ToString() );
} catch (WebException we) {
    SaveOrderState();
    /*
     * Some types of WebException indicate that the transaction may have been
     * completed by CyberSource. The sample code shows how to identify these
     * exceptions. If you receive such an exception, and your request included a
     * payment service, you should use the CyberSource transaction search screens to
     * determine whether the transaction was processed.
     */
    Console.WriteLine( we.ToString() );
} private static void SaveOrderState() {
    /*
     * This is where you store the order state in your system for post-transaction
     * analysis. Be sure to store the consumer information, the values of the reply
     * fields, and the details of any exceptions that occurred.
     */
}
In the preceding example, when an exception occurs, the exception is printed to the console. Your web store should also display a message to the consumer indicating that you were unable to process the order. The sample code for the name-value pair client shows you how to provide feedback to the consumer.

Also, if the transaction fails, and the request did not include any payment services, you may be able to resend the transaction. The sample code for the name-value pair client shows you how to do this.

### Interpreting the Reply

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to consumers. Instead, present an appropriate response that tells consumers the result.

---

**Important**

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

---

The most important reply fields to evaluate are the following:

- **decision:** A one-word description of the results of your request. The decision is one of the following:
  - **ACCEPT** if the request succeeded
  - **REJECT** if one or more of the services in the request was declined
  - **REVIEW** if you use CyberSource Decision Manager and it flags the order for review. See "For CyberSource Advanced Merchants: Handling Decision Manager Reviews," page 185 for more information.
  - **ERROR** if there was a system error. See "Retrying When System Errors Occur," page 187 for important information about handling retries in the case of system errors.

- **reasonCode:** A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card
authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

Important

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.

Using the Decision and Reason Code

The following example shows how you can use the decision and the reason code to display an appropriate message to the consumer.

```csharp
private static bool ProcessReply(Hashtable reply) {
 string template = GetTemplate(((string)reply["decision"]).ToUpper());
 string content = GetContent(reply);

 // This example writes the message to the console. Choose an appropriate display
 // method for your own application.
 Console.WriteLine(template, content);
}

private static string GetTemplate(string decision) {
 // Retrieves the text that corresponds to the decision.
 if ("ACCEPT".Equals(decision)) {
 return("The order succeeded.\n\n{0}");
 }
 if ("REJECT".Equals(decision)) {
 return("Your order was not approved.\n\n{0}");
 }
 // ERROR, or an unknown decision
 return("Your order could not be completed at this time.\n\nPlease try again later.\n\n{0}");
}

private static string GetContent(Hashtable reply) {
 /*
 * Uses the reason code to retrieve more details to add to the template.
 * The messages returned in this example are meant to demonstrate how to
 * retrieve the reply fields. Your application should display user-friendly
 * messages.
 */
```
int reasonCode = int.Parse((string)reply["reasonCode"]);  
switch (reasonCode) {
    // Success
    case 100:
        return( "\nRequest ID: " + reply["requestID"] );
    // Missing field or fields
    case 101:
        return( "\nThe following required fields are missing: " +
            EnumerateValues( reply, "missingField" ) );
    // Invalid field or fields
    case 102:
        return( "\nThe following fields are invalid: " +
            EnumerateValues( reply, "invalidField" ) );
    // Insufficient funds
    case 204:
        return( "\nInsufficient funds in the account. Please use a " +
            "different card or select another form of payment." );
    // Add additional reason codes here that you must handle more specifically.
    default:
        // For all other reason codes, such as unrecognized reason codes, or codes
        // that do not require special handling, return an empty string.
        return( String.Empty );
}

private static string EnumerateValues( Hashtable reply,
    string fieldName ) {
    string val = "";
    for (int i = 0; val != null; ++i) {
        val = (string)reply[fieldName + "_" + i];
        if (val != null) {
            sb.Append( val + "\n" );
        }
    }
    return( sb.ToString() );
}
For CyberSource Advanced Merchants: Handling Decision Manager Reviews

The information in this section applies only to CyberSource Advanced merchants.

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the `businessRules_ignoreAVSResult` field to "true" in your combined authorization and capture request:

```java
request.put("businessRules_ignoreAVSResult", "true");
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, CyberSource suggest that you either:

- Search for the transaction in the Business Center (depending on which one you normally use), look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.

Creating an Application Settings File

After you finish writing code for your integration, you must create an application settings file. This file must contain at least the following information:

- The directory that contains your security key
- The location of the CyberSource server

See Table 34, "Fields in the Settings File," on page 171 for a complete list of settings.

You can use the settings files that come with the sample applications as a starting point for your own settings file. See "Configuring the Test Applications," page 170 for more information.
Using XML

This section explains how to request CyberSource services by using XML.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server
- Processes the reply information

---

The CyberSource servers do not support persistent HTTP connections.

---

The instructions in this section explain how to write C# programs that request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.
Creating a Request Document

The XML client allows you to create an XML request document using any application, then send the request to CyberSource. For example, if you have a customer relationship management (CRM) system that uses XML to communicate with other systems, you can use the CRM system to generate request documents.

The request document must validate against the XML schema for CyberSource transactions. To view the schema, go to

https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

and look at the xsd file for the version of the Simple Order API you are using.

---

**Important**

Make sure that the elements in your document appear in the correct order. If they do not, your document will not validate, and your request will fail.

---

The following example shows a basic XML document for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

---

**Note**

The XML document in this example is incomplete. For complete examples, see sample.xml in the client's samples\bin directory.

---

Creating an Empty Request

Add the XML declaration and the document’s root element:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.17">
</requestMessage>
```

Make sure that the API version specified at the end of the namespace is correct. For example, to communicate with version 1.19, you must use the namespace urn:schemas-cybersource-com:transaction-data-1.19. When you must update the API version, see "Updating the Client to Use a Later API Version," page 176.

---

**Note**

The XML document that you receive in the reply always has the prefix c:, for example: xmlns:c="urn:schemas-cybersource-com:transaction-data-1.17". Make sure you use an XML parser that supports namespaces.
Adding the Merchant ID

Optionally, you can add the CyberSource merchant ID to the request:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.17">
 <merchantID>infodev</merchantID>
</requestMessage>
```

This value overrides any value that you set with the merchantID configuration setting. For more information about the merchantID configuration setting, see Table 34, “Fields in the Settings File,” on page 171. The merchant ID is case sensitive.

Adding Services to the Request

You next indicate the service that you want to use by creating an element for that service in the request, then setting the element’s `run` attribute to `true`. For example, to request a credit card authorization:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.15">
 <merchantID>infodev</merchantID>
 <ccAuthService run="true"/>
</requestMessage>
```

Requesting a Sale

You can request multiple services by creating additional elements. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (referred to as a “sale”):

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.17">
 <merchantID>infodev</merchantID>
 <ccAuthService run="true"/>
 <ccCaptureService run="true"/>
</requestMessage>
```
Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. Most fields are child elements of container elements; for example, a `<card>` element contains the consumer’s credit card information.

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.15">
 <merchantID>infodev</merchantID>
 <billTo>
 <firstName>Jane</firstName>
 <lastName>Smith</lastName>
 </billTo>
 <item id="0">
 <card>
 <accountNumber>4111111111111111</accountNumber>
 <ccAuthService run="true"/>
 </card>
 <unitPrice>29.95</unitPrice>
 </item>
</requestMessage>
```

The example above shows only a partial list of the fields you must send. Refer to “Related Documents,” page 21 for information about the guides that list all of the fields for the services that you are requesting.

Sending the Request

Once you have created an XML request document, you can use a .NET application to send the request to CyberSource. The example that follows is written in C#.

```
Note
The code in this section’s examples is incomplete. For complete sample programs, see the source code in the client’s samples\src\xml directory.
```

Creating a New Visual Studio .NET Project

To start, create a new project in Visual Studio .NET, and add a reference to the client library, CyberSource.Clients.dll, which is located in the client’s lib directory.
Chapter 5  .NET 2.0 Client

Importing the Client Classes

In the code for your application, add the following import statements:

```csharp
using CyberSource.Clients;
using System;
using System.Net;
using System.Xml;
```

Sending the Request

You next read the XML request document, send the request to CyberSource, store the reply in a new `XmlDocument` object, and catch several exceptions that you might receive:

```csharp
try {
 XmlDocument request = new XmlDocument();
 request.Load("MyXmlDocument.xml");

 XmlDocument reply = XmlClient.RunTransaction(request);
 SaveOrderState();
 // "Using the Decision and Reason Code," page 183 describes the ProcessReply
 // method.
 ProcessReply(reply);
} catch (SignException se) {
 SaveOrderState();
 Console.WriteLine(se.ToString());
} catch (FaultException fe) {
 SaveOrderState();
 /*
 * Some types of FaultException indicate that the transaction may have been
 * completed by CyberSource. The sample code shows how to identify these
 * exceptions. If you receive such an exception, and your request included a
 * payment service, you should use the CyberSource transaction search screens to
 * determine whether the transaction was processed.
 */
 Console.WriteLine(fe.ToString());
} catch (WebException we) {
 SaveOrderState();
 /*
 * Some types of WebException indicate that the transaction may have been completed
 * by CyberSource. The sample code shows how to identify these exceptions. If you
 * receive such an exception, and your request included a payment service, you
 * should use the CyberSource transaction search screens to determine whether the
 * transaction was processed.
 */
 Console.WriteLine(we.ToString());
}
```
In the preceding example, when an exception occurs, the exception is printed to the console. Your web store should also display a message to the consumer indicating that you were unable to process the order. The sample code for the XML client shows you how to provide feedback to the consumer.

Also, if the transaction fails, and the request did not include any payment services, you may be able to resend the transaction. The sample code for the XML client shows you how to do this.

### Interpreting the Reply

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to consumers. Instead, present an appropriate response that tells consumers the result.

---

**Important**

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.
The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
  - **ACCEPT** if the request succeeded
  - **REJECT** if one or more of the services in the request was declined
  - **REVIEW** if you use CyberSource Decision Manager and it flags the order for review. See "For CyberSource Advanced Merchants: Handling Decision Manager Reviews," page 197 for more information.
  - **ERROR** if there was a system error. See "Retrying When System Errors Occur," page 199 for important information about handling retries in the case of system errors.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

---

**Important**

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.
## Using the Decision and Reason Code

The following example shows how you can use the decision and the reason code to display an appropriate message to the consumer.

```csharp
private static bool ProcessReply(XmlDocument reply) {
 // The following code allows you to use XPath with the CyberSource schema, which
 // uses a non-empty default namespace.
 XmlNamespaceManager nsmgr
 = new XmlNamespaceManager(reply.NameTable);
 nsmgr.AddNamespace("cybs", Client.CYBS_NAMESPACE);

 XmlNode replyMessage
 = reply.SelectSingleNode("cybs:replyMessage", nsmgr);
 string decision = replyMessage.SelectSingleNode("cybs:decision/text()", nsmgr).Value;
 string template = GetTemplate(decision.ToUpper());
 string content = GetContent(replyMessage, nsmgr);

 // This example writes the message to the console. Choose an appropriate display
 // method for your own application.
 Console.WriteLine(template, content);
}

private static string GetTemplate(string decision) {
 // Retrieves the text that corresponds to the decision.
 if ("ACCEPT".Equals(decision)) {
 return("The order succeeded.(0)");

 }
}

if ("REJECT".Equals(decision)) {
 return("Your order was not approved.(0)");

}

// ERROR, or an unknown decision
return("Your order could not be completed at this time.(0)" +
```
private static string GetContent(
    XmlNode replyMessage, XmlNamespaceManager nsmgr ) {

    /*
     * Uses the reason code to retrieve more details to add to the template.
     * The messages returned in this example are meant to demonstrate how to retrieve
     * the reply fields. Your application should display user-friendly messages.
     */
    string textVal = replyMessage.SelectSingleNode(
        "cybs:reasonCode/text()", nsmgr ).Value;
    int reasonCode = int.Parse( textVal );
    switch (reasonCode) {
        // Success
        case 100:
            return( "\nRequest ID: " +
                replyMessage.SelectSingleNode( 
                    "cybs:requestID/text()", nsmgr ).Value );

        // Missing field or fields
        case 101:
            return( "\nThe following required fields are missing: " +
                EnumerateValues( replyMessage.SelectNodes( 
                    "cybs:missingField/text()", nsmgr ) ) );

        // Invalid field or fields
        case 102:
            return( "\nThe following fields are invalid: " +
                EnumerateValues( replyMessage.SelectNodes( 
                    "cybs:invalidField/text()", nsmgr ) ) );

        // Insufficient funds
        case 204:
            return( "\nInsufficient funds in the account. Please use a " +
                "different card or select another form of payment." );

        // Add additional reason codes here that you must handle more specifically.
        default:
            // For all other reason codes (for example, unrecognized reason codes, or
            // codes that do not require special handling), return an empty string.
            return( String.Empty );
    }
}

private static string EnumerateValues( XmlNodeList nodes ) {
    foreach (XmlNode node in nodes) {
        sb.Append( val + "\n" );
    }
    return( sb.ToString() );
}
For CyberSource Advanced Merchants: Handling Decision Manager Reviews

The information in this section applies only to CyberSource Advanced merchants.

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the `businessRules_ignoreAVSResult` field to "true" in your combined authorization and capture request:

```xml
<businessRules>
 <ignoreAVSResult>true</ignoreAVSResult>
</businessRules>
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note
Chapter 5 .NET 2.0 Client

Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center (depending on which one you normally use), look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.
- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.

Creating an Application Settings File

After you finish writing code for your integration, you must create an application settings file. This file must contain, at a minimum, the following information:

- The directory that contains your security key
- The location of the CyberSource server

See Table 34, "Fields in the Settings File," on page 171 for a complete list of settings.

You can use the settings files that come with the sample applications as a starting point for your own settings file. See "Configuring the Test Applications," page 170 for more information.
Using SOAP

This section explains how to request CyberSource services by using the Simple Object Access Protocol (SOAP).

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server

The CyberSource servers do not support persistent HTTP connections.

Important

- Processes the reply information

The instructions in this section explain how to write C# programs that request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Creating and Sending the Request

To use any CyberSource service, you must create and send a request that includes the required information for that service.

The following example shows basic code for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

Important

The code in this section’s examples is incomplete. For complete sample programs, see the source code in the client’s samples\src\soap directory.

Creating a New Visual Studio .NET Project

To get started, create a new project in Visual Studio .NET, and add a reference to the client library, CyberSource.Clients.dll, which is located in the client’s lib directory. You must also add a reference to the library System.Web.Services.dll, which is part of the .NET Framework.
Importing the Client Classes
In the code for your application, add the following import statements:

```csharp
using CyberSource.Clients.dll;
using CyberSource.Clients.SoapWebReference;
using System;
using System.Configuration;
using System.Net;
```

Creating an Empty Request
You next create a RequestMessage object that holds the request fields:

```csharp
RequestMessage request = new RequestMessage();
```

Adding the Merchant ID
You next optionally add your CyberSource merchant ID to the request:

```csharp
request.merchantID = "infodev";
```

This value overrides any value you set with the merchantID configuration setting (see Table 34, "Fields in the Settings File," on page 171). The merchant ID is case sensitive.

Adding Services to the Request
You next indicate the service that you want to use by creating an object for that service in the request, then setting the object's run property to true. For example, to request a credit card authorization:

```csharp
request.ccAuthService = new CCAuthService();
request.ccAuthService.run = "true";
```

Requesting a Sale
You can request multiple services by creating additional objects. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (referred to as a "sale"):

```csharp
request.ccAuthService = new CCAuthService();
request.ccAuthService.run = "true";
request.ccCaptureService = new CCCaptureService();
request.ccCaptureService.run = "true";
```
Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. Most fields are properties of additional objects; for example, a Card object contains the consumer’s credit card information.

```csharp
BillTo billTo = new BillTo();
billTo.firstName = "Jane";
billTo.lastName = "Smith";
request.billTo = billTo;

Card card = new Card();
card.accountNumber = "4111111111111111";
request.card = card;

// There is one item in this sample
request.item = new Item[1];
Item item = new Item();
item.id = "0";
item.unitPrice = "29.95";
request.item[0] = item;
```

The example above shows only a partial list of the fields you must send. Refer to "Related Documents," page 21 for information about the guides that list all of the fields for the services that you are requesting.
Sending the Request

You next send the request to CyberSource, store the reply in a new `ReplyMessage` object, and handle several exceptions that you might receive.

```csharp
try {
 ReplyMessage reply = SoapClient.RunTransaction(request);
 SaveOrderState();
 // "Using the Decision and Reason Code," page 183 describes the ProcessReply
 // method.
 ProcessReply(reply);
 catch (SignException se) {
 SaveOrderState();
 Console.WriteLine(se.ToString());
 }
 catch (SoapHeaderException she) {
 SaveOrderState();
 Console.WriteLine(she.ToString());
 }
 catch (SoapBodyException sbe) {
 SaveOrderState();
 /*
 Some types of SoapBodyException indicate that the transaction may have been
 completed by CyberSource. The sample code shows how to identify these exceptions.
 If you receive such an exception, and your request included a payment service,
 you should use the CyberSource transaction search screens to determine whether
 the transaction was processed.
 */
 Console.WriteLine(sbe.ToString());
 }
 catch (WebException we) {
 SaveOrderState();
 /*
 Some types of WebException indicate that the transaction may have been
 completed by CyberSource. The sample code shows how to identify these exceptions.
 If you receive such an exception, and your request included a payment service,
 you should use the CyberSource transaction search screens to determine whether
 the transaction was processed.
 */
 Console.WriteLine(we.ToString());
 }
}
private static void SaveOrderState() {
 /*
 This is where you store the order state in your system for post-transaction
 analysis. Be sure to store the consumer information, the values of the reply
 fields, and the details of any exceptions that occurred.
 */
}
In the preceding example, when an exception occurs, the exception is printed to the console. Your web store should also display a message to the consumer indicating that you were unable to process the order. The sample code for the SOAP client shows you how to provide feedback to the consumer.

Also, if the transaction fails, and the request did not include any payment services, you may be able to resend the transaction. The sample code for the SOAP client shows you how to do this.

Interpreting the Reply

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to consumers. Instead, present an appropriate response that tells consumers the result.

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - **ACCEPT** if the request succeeded
 - **REJECT** if one or more of the services in the request was declined
 - **REVIEW** if you use CyberSource Decision Manager and it flags the order for review. See "For CyberSource Advanced Merchants: Handling Decision Manager Reviews," page 207 for more information.
 - **ERROR** if there was a system error. See "Retrying When System Errors Occur," page 209 for important information about handling retries in the case of system errors.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card
authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

Using the Decision and Reason Code
The following example shows how you can use the decision and the reason code to display an appropriate message to the consumer.

```csharp
private static bool ProcessReply( ReplyMessage reply ) {
    string template = GetTemplate( reply.decision.ToUpper() );
    string content = GetContent( reply );

    // This example writes the message to the console. Choose an appropriate display
    // method for your own application.
    Console.WriteLine( template, content );
}

private static string GetTemplate( string decision ) {
    // Retrieves the text that corresponds to the decision.
    if ("ACCEPT".Equals( decision )) {
        return( "The order succeeded.(0)" );
    }
    if ("REJECT".Equals( decision )) {
        return( "Your order was not approved.(0)" );
    }
    // ERROR, or an unknown decision
    return( "Your order could not be completed at this time.(0)" +
        "\nPlease try again later." );
}

private static string GetContent( ReplyMessage reply ) {
    /*
    * Uses the reason code to retrieve more details to add to the template.
    * The messages returned in this example are meant to demonstrate how to retrieve
    * the reply fields. Your application should display user-friendly messages.
    */
```
int reasonCode = int.Parse(reply.reasonCode);
switch (reasonCode) {
 // Success
 case 100:
 return("\nRequest ID: " + reply.requestID);
 // Missing field or fields
 case 101:
 return("\nThe following required fields are missing: " +
 EnumerateValues(reply.missingField));
 // Invalid field or fields
 case 102:
 return("\nThe following fields are invalid: " +
 EnumerateValues(reply.invalidField));
 // Insufficient funds
 case 204:
 return("\nInsufficient funds in the account. Please use a " +
 "different card or select another form of payment.");
 // Add additional reason codes here that you must handle more specifically.
 default:
 // For all other reason codes, such as unrecognized reason codes or codes
 // that do not require special handling, return an empty string.
 return(String.Empty);
}

private static string EnumerateValues(string[] array) {
 foreach (string val in array) {
 sb.Append(val + "\n");
 }
 return(sb.ToString());
}
For CyberSource Advanced Merchants: Handling Decision Manager Reviews

The information in this section applies only to CyberSource Advanced merchants.

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the `businessRules_ignoreAVSResult` field to "true" in your combined authorization and capture request:

```csharp
BusinessRules businessRules = new BusinessRules();

businessRules.ignoreAVSResult = "true";

request.businessRules = businessRules;
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, the error may actually be caused by a processor rejection, not a CyberSource system error. In that case, we suggest one of these actions:

- Search for the transaction in the Business Center (depending on which one you normally use), look at the description of the error on the Transaction Detail page, and call your processor to determine if and why the transaction was rejected.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion because several common TSYS Acquiring Solutions processor responses can be returned as system errors, and only TSYS Acquiring Solutions can address these errors.

Creating an Application Settings File

After you finish writing code for your integration, you must create an application settings file. This file must contain at least the directory that contains your security key and the location of the CyberSource server.

See Table 34, "Fields in the Settings File," on page 171 for a complete list of settings. You can use the settings files that come with the sample applications as a starting point for your own settings file. See "Configuring the Test Applications," page 170 for more information.
Setting the Connection Limit

This section explains how to increase the number of simultaneous connections between the client and CyberSource.

By default, you can create only two simultaneous connections to an HTTP server. By increasing the number of connections, you can avoid a backlog of requests during times of very high transaction volume. Microsoft recommends for the connection limit a value that is 12 times the number of CPUs. For example, if you have two CPUs, you can set the connection limit to 24. To determine the optimum setting for your application, make sure to run performance tests.

Examples

You can increase the number of connections in many ways, for example by using an application- or server-specific configuration file where you can change the setting for a single or for all hosts. The examples below describe briefly some of the methods that you can use to increase connection limits.

cybs.connectionLimit

When set to a value other than -1, the cybs.connectionLimit setting in the client increases the limit for the host where you are sending the request by executing these statements on your behalf:

```csharp
ServicePoint sp = ServicePointManager.FindServicePoint(uri);
sp.ConnectionLimit = config.ConnectionLimit;
```

<connectionManagement>

You can set the connection limit by using .NET's <connectionManagement> tag. In this example, the connection limit for CyberSource's test and production hosts is 12 while the limit for all other hosts is 2:

```xml
<system.net>
  <connectionManagement>
    <add address = "https://ics2wstesta.ic3.com" maxconnection = "12" />
    <add address = "https://ics2wsa.ic3.com" maxconnection = "12" />
    <add address = "*" maxconnection = "2" />
  </connectionManagement>
</system.net>
```
DefaultConnectionLimit

You can set the connection limit for all hosts to which your application is connected before a connection is made by using the following line in your start-up code:

```csharp
ServicePointManager.DefaultConnectionLimit = your_value_here;
```

References

For more information on these and other methods to increase the connection limits, see the following Microsoft documentation:

Sample ASP.NET Code Using Visual Basic

The following sample files illustrate how to use the CyberSource Name-Value Pair client in ASP.NET using Visual Basic. The `web.config` file is a sample web application configuration file containing sample entries required by the client. The other files are simple web forms and their corresponding code-behind files. The `Checkout.aspx` file contains a pre-filled form. When you press the Submit button, it will post the entered data to `Checkout2.aspx`, which will send the transaction to CyberSource.
Listing 1: web.config

```xml
<?xml version="1.0"?>
<configuration>
    <appSettings>
        <add key="cybs.merchantID" value="your_merchant_id"/>
        <add key="cybs.keysDirectory" value="c:\keys"/>
        <add key="cybs.sendToProduction" value="false"/>

        <!-- Logging should normally be disabled in production as it would -->
        <!-- slow down the processing. Enable it only when troubleshooting -->
        <!-- an issue. -->
        <add key="cybs.enableLog" value="false"/>
        <add key="cybs.logDirectory" value="C:\Program Files\CyberSource
Corporation\simapi-net-2.0-5.0.0\logs"/>

        <!-- Please refer to the Connection Limit section in the README for -->
        <!-- connection limit. When not specified or is set to -1, the -->
        <!-- client will implicitly use the connection limit currently in -->
        <!-- force, which would be 2 if none of the alternate methods are -->
        <!-- used. -->
        <add key="cybs.connectionLimit" value="-1"/>
    </appSettings>
</configuration>
```
Listing 2: Checkout.aspx

```html
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Checkout.aspx.vb" Inherits="NVP" Debug="true" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
    <title>Name Value Pair - Order Page</title>
</head>
<body>
<form action="Checkout2.aspx" method="post">
    Please confirm the information below and click the Submit button to perform the authorization.
    
    <h3>Billing Information</h3>
    First Name:<br/>
    <input type="text" name="billTo_firstName" value="John"/>
    <br/>
    Last Name:<br/>
    <input type="text" name="billTo_lastname" value="Doe"/>
    <br/>
    Street Address:<br/>
    <input type="text" name="billTo_street1" value="1295 Charleston Road"/>
    <br/>
    City:<br/>
    <input type="text" name="billTo_city" value="Mountain View"/>
    <br/>
    State:<br/>
    <input type="text" name="billTo_state" value="CA"/>
    <br/>
    Postal Code:<br/>
    <input type="text" name="billTo_postalCode" value="94043"/>
    <br/>
    Country:<br/>
    <input type="text" name="billTo_country" value="US"/>
    <br/>
    Email Address:<br/>
    <input type="text" name="billTo_email" value="nobody@cybersource.com"/>
    <br/>
    <input type="submit" value="Submit"/>
</form>
</body>
</html>
```
Listing 3: Checkout.aspx.vb

```vbnet
Partial Class NVP
    Inherits System.Web.UI.Page
End Class
```

Listing 4: Checkout2.aspx

```xml
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Checkout2.aspx.vb"
Inherits="NVP2" Debug="true" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
    <title>Name Value Pair - Receipt</title>
</head>
<body>
    <form id="form1" runat="server">
        <div>
        </div>
    </form>
</body>
</html>
```
Imports CyberSource.Clients.NVPClient

Partial Class NVP2
 Inherits System.Web.UI.Page

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
 Handles MyBase.Load
 'Declare the request hashtable
 Dim oRequest As New Hashtable
 oRequest.Add("ccAuthService_run", "true")
 oRequest.Add("merchantReferenceCode", "MRC-5254555")

 'Add user input fields from post
 oRequest.Add("billTo_firstName", Request.Form("billTo_firstName"))
 oRequest.Add("billTo_lastName", Request.Form("billTo_lastName"))
 oRequest.Add("billTo_street1", Request.Form("billTo_street1"))
 oRequest.Add("billTo_city", Request.Form("billTo_city"))
 oRequest.Add("billTo_state", Request.Form("billTo_state"))
 oRequest.Add("billTo_postalCode", Request.Form("billTo_postalCode"))
 oRequest.Add("billTo_country", Request.Form("billTo_country"))
 oRequest.Add("card_accountNumber", Request.Form("card_accountNumber"))
 oRequest.Add("card_expirationMonth", Request.Form("card_expirationMonth"))
 oRequest.Add("card_expirationYear", Request.Form("card_expirationYear"))
 oRequest.Add("item_0_unitPrice", Request.Form("item_0_unitPrice"))
 oRequest.Add("purchaseTotals_currency", "USD")

 'Declare the reply hashtable
 Dim varReply As New Hashtable

 'Run the transaction
 varReply = CyberSource.Clients.NVPClient.RunTransaction(oRequest)

 'Print reply data to the browser
 Response.Write("reasonCode: " & varReply("reasonCode").ToString)
 Response.Write("
Decision: " & varReply("decision").ToString)
 Response.Write("
RequestID: " & varReply("requestID").ToString)
 End Sub
 End Class
Choosing an API and Client

API Variation

With this client package, you can use any of the three variations of the Simple Order API:

- Name-value pairs, which are simpler to use than XML
- XML, which requires you to create and parse XML documents
- SOAP (Simple Object Access Protocol) 1.1, which provides an object-oriented interface

The test that you run immediately after installing the client uses name-value pairs.
Client Versions

CyberSource updates the Simple Order API on a regular basis to introduce new API fields and functionality. To identify the latest version of the API, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor.

This represents the version of the server-side code for the CyberSource services.

If a new version of the API has been released, but CyberSource has not yet updated the .NET client to use this new version, you can manually update the client to use a different version. See "Updating the Client to Use a Later API Version," page 228.

Basic C# Program Example

The following example shows the primary code required to send a SOAP request for credit card authorization and process the reply. See "Using SOAP," page 251 for more information.

```csharp
using CyberSource.Soap;
using CyberSource.Soap.CyberSourceWS;
using System;
using System.Configuration;
using System.Net;
namespace Sample {
    class Sample {
        static void Main(string[] args) {
            RequestMessage request = new RequestMessage();
            request.merchantID = "infodev";

            // we want to do Credit Card Authorization in this sample
            request.ccAuthService = new CCAuthService();
            request.ccAuthService.run = "true";
```
// add required fields
request.merchantReferenceCode = "148705822705344";
BillTo billTo = new BillTo();
billTo.firstName = "Jane";
billTo.lastName = "Smith";
billTo.street1 = "1295 Charleston Road";
billTo.city = "Mountain View";
billTo.state = "CA";
billTo.postalCode = "94043";
billTo.country = "US";
billTo.email = "jsmith@example.com";
request.billTo = billTo;
Card card = new Card();
card.accountNumber = "4111111111111111";
card.expirationMonth = "12";
card.expirationYear = "2010";
request.card = card;
PurchaseTotals purchaseTotals = new PurchaseTotals();
purchaseTotals.currency = "USD";
request.purchaseTotals = purchaseTotals;

// there is one item in this sample
request.item = new Item[1];
Item item = new Item();
item.id = "0";
item.unitPrice = "29.95";
request.item[0] = item;

// See "Interpreting the Reply," page 255 for details about processing the reply for a SOAP transaction.
try {
 ReplyMessage reply = Client.RunTransaction(request);
} catch (CryptographicException ce) {
 Console.WriteLine(ce.ToString());
} catch (MessageSecurityException mse) {
 Console.WriteLine(mse.ToString());
} catch (WebException we) {
 Console.WriteLine(we.ToString());
} catch (Exception e) {
 Console.WriteLine(e.ToString());
}
Installing and Testing the Client

Minimum System Requirements

- Microsoft Windows 2000 or later
- .NET Framework 4.0 or later
- Microsoft Visual Studio 2010

Important

Failure to configure your client API host to a unique, public IP address will cause inconsistent transaction results.

The client API request ID algorithm uses a combination of IP address and system time, along with other values. In some architectures this combination might not yield unique identifiers.

Transaction Security Keys

The first thing you must do is create your security key. The client uses the security key to add a digital signature to every request that you send. This signature helps ensure that no one else can use your CyberSource account to process orders. You specify the location of your key when you configure the client.

Important

You must generate two transaction security keys—one for the CyberSource production environment and one for the test environment. For information about generating and using security keys, see Creating and Using Security Keys (PDF | HTML).

Warning

You must protect your security key to ensure that your CyberSource account is not compromised.
Installing for the First Time

To install the client for the first time:

Step 1 Go to the client downloads page on the Support Center and download the zip file that contains the latest version of the client.

Step 2 Unzip the downloaded file to the location of your choice:

![Unzipped directory contents](image)

Step 3 Test the client. See "Using the Test Applications," page 223.

The client is installed and tested. You are ready to create your own code for requesting CyberSource services. Finish reading this section, and move on to one of these sections:

- "Using Name-Value Pairs," page 230 if you plan to use name-value pairs
- "Using XML," page 239 if you plan to use XML
- "Using SOAP," page 251 if you plan to use SOAP
Chapter 6 .NET 4.0 Client

Upgrading from a Previous Version

The .NET 4.0 Simple Order API client is a pure .NET client without dependencies outside of the .NET 4.0 Framework. It is simplified in comparison to previous Simple Order API .NET clients because it does not require the Microsoft Web Services Enhancements (WSE) and it does not use the CyberSource security libraries.

Previous versions of the Cybersource.Clients.dll required that you register CybsWSSecurity.dll as a COM object. The CybsWSSecurity.dll had dependencies on many other dynamic-link libraries (DLLs). Because the .NET 4.0 Simple Order API client does not use the CyberSource security libraries, you can remove or unregister the following DLLs:

- CybsWSSecurity.dll (unregister)
- CybsWSSecurityIOP.dll
- CyberSource.WSSecurity.dll
- domsupport_1_4_0.dll
- Msvcp60.dll
- platformsupport_1_4_0.dll
- spapache.dll
- xalandom_1_4_0.dll
- xalansourcetree_1_4_0.dll
- xerces-c_2_1_0.dll
- xercesparserliaison_1_4_0.dll
- xmlsupport_1_4_0.dll
- xpath_1_4_0.dll

Migrating from .NET Framework 1.x

To migrate from a .NET Framework 1.x client:

Step 1 Replace the old DLLs with the ones from this package.

Step 2 In your project, remove references to the previous CyberSource DLLs.

Step 3 Add a reference to CyberSource.Clients.dll.

Step 4 In your request code, make the following changes:

- Replace the referenced CyberSource namespaces with this one:

  ```csharp
  CyberSource.Clients
  ```
If you use the SOAP client, add the following namespace:

```csharp
using CyberSource.Clients.SoapWebReference
```

Example

In C#, with the SOAP client, you now have:

```csharp
using CyberSource.Clients;
using CyberSource.Clients.SoapWebReference; /* for SOAP client only */
```

Step 5

Follow the instructions for migrating from .NET Framework 2.X.

Migrating from .NET Framework 2.x

To migrate from a .NET Framework 2.x client:

Step 1

Follow the installation instructions in "Installing for the First Time," page 220.

Step 2

Open your project in Visual Studio 2010. If necessary, use the conversion wizard to update your project from Visual Studio 2005 to Visual Studio 2010.

Step 3

In your project properties, set the target framework to .NET Framework 4.

Step 4

Make sure that your reference to CyberSource.Clients points to the new .NET 4.0 version of the DLL. You must use the DLLs that you installed in Step 1.

Step 5

Remove references to System.Web.Services and remove the following namespace from your code:

```csharp
```

Step 6

If your code contains catch statements that use `SignException`, change them to use `CryptographicException` instead. Making this change requires that you add a reference to System.Security and add the following namespace to your code:

```csharp
using System.Security.Cryptography
```
Chapter 6 .NET 4.0 Client

You have successfully upgraded your client to the new version.

Using the Test Applications

Each type of client variation—name-value pair, XML, and SOAP—including a pre-compiled test application. You can use these test applications to ensure that the client was installed correctly. The applications request both credit card authorization and capture.

The test applications and their source code are installed in the samples directory. The bin subdirectory contains the pre-compiled binaries. The src subdirectory contains the source code and Visual Studio project files.

Configuring the Test Applications

Before you run a test application, you must edit its application settings file. The following table describes all the configuration fields that you can use in this file.

Table 35 Fields in the Settings File

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Required/Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>cybs.connectionLimit</td>
<td>Maximum number of allowed concurrent connections between the client and CyberSource’s server. For more information on this field and alternate ways to set the connection limits, see "Setting the Connection Limit," page 261.</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Important

- For SOAP and name-value pair (NVP) clients only:
 Remove any catch statements that use SoapHeaderException or SoapBodyException.

- For SOAP clients only:
 Consider replacing these exceptions with appropriate Windows Communication Foundation (WCF) services exceptions such as MessageSecurityException, EndpointNotFoundException, or ChannelTerminatedException depending on your requirements. Then you must add a reference to System.ServiceModel and add the following namespaces to your code:
 using System.ServiceModel;
 using System.ServiceModel.Security;

Note

Configuration settings supported by the latest 1.x.x version are still supported. However, CyberSource recommends that you use the following new settings for this and future versions.
Table 35 Fields in the Settings File (Continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Required/Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>cybs.keysDirectory</td>
<td>Directory that contains the pkcs12 security key file. For example: c:\keys\</td>
<td>Required</td>
</tr>
<tr>
<td>cybs.merchantID</td>
<td>Your CyberSource merchant ID. You can override this value by providing the merchantID field in the request itself. The merchant ID is case sensitive.</td>
<td>Optional</td>
</tr>
</tbody>
</table>
| cybs.sendToProduction | Flag that indicates whether the transactions for this merchant should be sent to the production server. Use one of these values:
 - **false**: Do not send to the production server; send to the test server (default setting).
 - **true**: Send to the production server.
 Note Make sure that if your merchant ID is configured to use the test mode, you send requests to the test server. | Required |
| cybs.keyFilename | Name of the security key file name for the merchant in the format `<security_key_filename>.p12`. | Optional |
| cybs.serverURL | Alternate server URL to use. For more information, see "Configuring Your Settings for Multiple Merchants," page 226. Give the complete URL because it will be used exactly as you specify. | Optional |
| cybs.enableLog | Flag directing the client to log transactions and errors. Use one of these values:
 - **false**: Do not enable logging (default setting).
 - **true**: Enable logging.
 Important Logging can cause very large log files to accumulate. Therefore, CyberSource recommends that you use logging only when troubleshooting problems. To comply with all Payment Card Industry (PCI) and Payment Application (PA) Data Security Standards regarding the storage of credit card and card verification number data, the logs that are generated contain only masked credit card and card verification number data (CVV, CVC2, CVV2, CID, CVN).
 Follow these guidelines:
 - Use debugging temporarily for diagnostic purposes only.
 - If possible, use debugging only with test credit card numbers.
 - Never store clear text card verification numbers.
 - Delete the log files as soon as you no longer need them.
 - Never send email to CyberSource containing personal and account information, such as customers' names, addresses, card or check account numbers, and card verification numbers.
 For more information about PCI and PABP requirements, see www.visa.com/cisp. | Optional |
Table 35 Fields in the Settings File (Continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Required/Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>cybs.logDirectory</td>
<td>Directory to which to write the log file. Note that the client will not create this directory for you; you must specify an existing directory. The client includes a logs directory that you can use. Include the path. For example: c:simapi-net-2.0.0\logs.</td>
<td>Required if cybs.enableLog is true</td>
</tr>
<tr>
<td>cybs.logFilename</td>
<td>Name of the log file. The client uses cybs.log by default.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.logMaximumSize</td>
<td>Maximum size in megabytes for the log file. The default value is 10. When the log file reaches the specified size, it is archived into cybs.log.<yyyymmdd>hunmsxxxx> and a new log file is started. The xxxx indicates milliseconds.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.timeout</td>
<td>Length of time-out in seconds. The default is 130.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.proxyURL</td>
<td>URL of a proxy server. For example: https://proxy.example.com:4909</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.proxyUser</td>
<td>User name for the proxy server.</td>
<td>Optional</td>
</tr>
<tr>
<td>cybs.proxyPassword</td>
<td>Password for the proxy server.</td>
<td>Optional</td>
</tr>
</tbody>
</table>
To test applications:

Step 1 Decide which test application you want to run, such as SoapSample.exe.

Step 2 Using a text editor, open the settings file for the test application. The settings file has the same name as the test application, with the extension config appended to the name. For example, SoapSample.exe.config.

Step 3 Find the cybs.merchantID field and change its value to your CyberSource merchant ID. For example, if your merchant ID is widgetsinc, change the field to
<add key="cybs.merchantID" value="widgetsinc"/>
The merchant ID is case sensitive.

Step 4 Find the cybs.keysDirectory field and change its value to the directory that contains your security key. For example, if your key is in c:\keys\, change the field to
<add key="cybs.keysDirectory" value="c:\keys\"/>

Step 5 Edit other fields as necessary. See Table 35, "Fields in the Settings File," on page 223 for a complete list.

Step 6 Save and close the settings file.

Configuring Your Settings for Multiple Merchants

If you have multiple merchant IDs, or if you are a reseller handling multiple merchants, you can configure the settings to allow different configurations for different merchant IDs.

To specify the settings for a specific merchant, prefix all settings, except for cybs.merchantID and the cybs.proxy*, with <merchantID>. The cybs.proxy* wildcard refers to the proxyURL, proxyUser, proxyPassword settings.

Example You have a new merchant with merchant ID of NewMerchant. To send only test transactions for this merchant, you can set all requests for NewMerchant to go to the test server:

<add key="cybs.NewMerchant.sendToProduction" value="false"/>
<add key="cybs.sendToProduction" value="true"/>

With the second line of the example, the client will send all other requests to the production server.
Running the Test Applications

To run test applications:

Step 1 Open a Windows command-line shell.

Step 2 Change to the directory where the test application is located.

Step 3 Type the name of the test application, then press Enter.

The test application requests an CyberSource service, interprets the reply, and prints information about the result. If you receive a .NET exception, use the error message to debug the problem.

Deploying the Client to Another Computer

To deploy the client to another computer without running the installer provided by CyberSource, you must include all the files from the `lib` directory in your custom installer and then run it. Then the client is ready to be used on the computer.

Going Live

When you complete all of your system testing and are ready to accept real transactions from consumers, your deployment is ready to go live.

Note

After your deployment goes live, use real card numbers and other data to test every card type you support. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Process an authorization, then capture the authorization, and later refund the money. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.

CyberSource Essentials Merchants

If you use CyberSource Essentials services, you can use the Business Center site to go live. For a description of the process of going live, see the “Steps for Getting Started” section in *Getting Started with CyberSource Essentials*.

Important

You must also configure your client so that it sends transactions to the production server and not the test server. See the description of the configuration setting "cybs. sendToProduction," page 224.
CyberSource Advanced Merchants

If you use CyberSource Advanced services, see the “Steps for Getting Started” chapter in Getting Started with CyberSource Advanced for information about going live.

When your deployment goes live, your CyberSource account is updated so that you can send transactions to the CyberSource production server. If you have not already done so, you must provide your banking information to CyberSource so that your processor can deposit funds to your merchant bank account.

After CyberSource confirms that your account is live, make sure that you update your system so that it can send requests to the production server (ics2wsa.ic3.com) using your security key for the production environment. The test server (ics2wstesta.ic3.com) cannot be used for real transactions. For more information about sending transactions to the production server, see the description of the configuration setting "cybs. sendToProduction," page 224.

Updating the Client to Use a Later API Version

CyberSource periodically updates the Simple Order API. You can update your existing client to work with the new API version. For a list of the available API versions, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor.

Alternately, if a new client is available that works with the later API version, you can download that new client.

Note

The new client may have new functionality unrelated to the changes in the API. Read the release notes in the CHANGES file to determine if the new client contains new functionality that you want to use.

Name-Value Pair Client

To update a name-value pair client:

Step 1 Load src\CyberSource.Clients.sln in Visual Studio 2010.

Step 2 In the Solution Explorer, locate the Service References folder.

Step 3 Right-click NVPWebReference and choose Configure Service Reference.

Step 4 Update the Address field with the New WSDL URL. Typically, only the version number at the end of the URL needs to be updated.

Step 5 Build the Release configuration.
Chapter 6 .NET 4.0 Client

Step 6 Save a copy of the original CyberSource.Clients.dll and then replace it with the newly built CyberSource.Clients.dll.

SOAP Client

To update a SOAP client:

Step 1 Load src\CyberSource.Clients.sln in Visual Studio 2010.
Step 2 In the Solution Explorer, locate the Service References folder.
Step 3 Right-click SoapWebReference and choose Configure Service Reference.
Step 4 Update the Address field with the New WSDL URL. Typically, only the version number at the end of the URL needs to be updated.
Step 5 Build the Release configuration.
Step 6 Save a copy of the original CyberSource.Clients.dll and then replace it with the newly built CyberSource.Clients.dll.

XML Client

Updating the client is unnecessary. Start using the new namespace URI in your input XML documents. The client automatically uses the specified version.
Using Name-Value Pairs

This section explains how to request CyberSource services by using name-value pairs.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server
- Processes the reply information

The CyberSource servers do not support persistent HTTP connections.

Creating and Sending the Request

To use any CyberSource service, you must create and send a request that includes the required information for that service.

The example developed in the following sections shows basic code for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

Creating a New Visual Studio .NET Project

To get started, create a new project in Visual Studio .NET, and add a reference to the client library, CyberSource.Clients.dll, which is located in the client’s lib directory.
Importing the Client Classes
In the code for your application, add the following import statements:

```csharp
using CyberSource.Clients;
using System;
using System.Collections;
using System.Net;
using System.ServiceModel;
using System.ServiceModel.Security;
```

Creating an Empty Request
You next create a hashtable that holds the request fields:

```csharp
Hashtable request = new Hashtable();
```

Adding the Merchant ID
You next optionally add your CyberSource merchant ID to the request:

```csharp
request.Add( "merchantID", "infodev" );
```

This value overrides any value you set with the merchantID configuration setting (see Table 35, "Fields in the Settings File," on page 223). The merchant ID is case sensitive.

Adding Services to the Request
You next indicate the service that you want to use by adding a field to the request. For example, to request a credit card authorization:

```csharp
request.Add( "ccAuthService_run", "true" );
```

Requesting a Sale
You can request multiple services by adding additional fields to the request. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (also referred to as a “sale”):

```csharp
request.Add( "ccAuthService_run", "true" );
request.Add( "ccCaptureService_run", "true" );
```
Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. If you request multiple services and they share common fields, you must add the field once only.

```csharp
request.Add( "billTo_firstName", "Jane" );
request.Add( "billTo_lastName", "Smith" );
request.Add( "card_accountNumber", "4111111111111111" );
request.Add( "item_0_unitPrice", "29.95" );
```

The previous example shows only a partial list of the fields you must send. Refer to "Requesting CyberSource Services," page 230 for information about the guides that list all of the fields for the services that you are requesting.

Sending the Request

You next send the request to CyberSource, store the reply in a new hash table, and catch several exceptions that you might receive:

```csharp
try {
    Hashtable reply = NVPClient.RunTransaction( request );
    SaveOrderState();
    // "Using the Decision and Reason Code," page 234 describes the ProcessReply
    // method.
    ProcessReply( reply );
    } catch (CryptographicException ce) {
    SaveOrderState();
    Console.WriteLine( ce.ToString() );
    } catch (WebException we) {
    SaveOrderState();
    /*
    * Some types of WebException indicate that the transaction may have been
    * completed by CyberSource. The sample code shows how to identify these
    * exceptions. If you receive such an exception, and your request included a
    * payment service, you should use the CyberSource transaction search screens to
    * determine whether the transaction was processed.
    */
    Console.WriteLine( we.ToString() );
} private static void SaveOrderState() {
    /*
    * This is where you store the order state in your system for post-transaction
    * analysis. Be sure to store the consumer information, the values of the reply
    * fields, and the details of any exceptions that occurred.
    */
} ```
In the preceding example, when an exception occurs, the exception is printed to the
console. Your web store should also display a message to the consumer indicating that
you were unable to process the order. The sample code for the name-value pair client
shows you how to provide feedback to the consumer.

Also, if the transaction fails, and the request did not include any payment services, you
may be able to resend the transaction. The sample code for the name-value pair client
shows you how to do this.

**Interpreting the Reply**

After the CyberSource server processes your request, it sends a reply message that
contains information about the services you requested. You receive different fields
depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system
that uses that data. For example, you can store the reply information in a database and
send it to other back office applications.

You must write an error handler to process the reply information that you receive from
CyberSource. Do not show the reply information directly to consumers. Instead, present
an appropriate response that tells consumers the result.

---

**Important**

Because CyberSource may add reply fields and reason codes at any time, you
should parse the reply data according to the names of the fields instead of their
order in the reply.

---

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of
  the following:
  - ACCEPT if the request succeeded
  - REJECT if one or more of the services in the request was declined
  - REVIEW if you use CyberSource Decision Manager and it flags the order for
    review. See "For CyberSource Advanced Merchants: Handling Decision Manager
    Reviews," page 236 for more information.
  - ERROR if there was a system error. See "Retrying When System Errors Occur,"
    page 238 for important information about handling retries in the case of system
    errors.

- **reasonCode**: A numeric code that provides more specific information about the
  results of your request.

You also receive a reason code for each service in your request. You can use these
reason codes to determine whether a specific service succeeded or failed. If a service
fails, other services in your request may not run. For example, if you request a credit card
authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

---

Important

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.

---

Using the Decision and Reason Code

The following example shows how you can use the decision and the reason code to display an appropriate message to the consumer.

```csharp
private static bool ProcessReply(Hashtable reply) {
 string template = GetTemplate((string)reply["decision"]).ToUpper();
 string content = GetContent(reply);

 // This example writes the message to the console. Choose an appropriate display
 // method for your own application.
 Console.WriteLine(template, content);
}

private static string GetTemplate(string decision) {
 // Retrieves the text that corresponds to the decision.
 if ("ACCEPT".Equals(decision)) {
 return("The order succeeded.{0}");
 }
 if ("REJECT".Equals(decision)) {
 return("Your order was not approved.{0}");
 }
 // ERROR, or an unknown decision
 return("Your order could not be completed at this time.{0}" +
 "\nPlease try again later.");
}

private static string GetContent(Hashtable reply) {
 /*
 * Uses the reason code to retrieve more details to add to the template.
 * The messages returned in this example are meant to demonstrate how to
 * retrieve the reply fields. Your application should display user-friendly
 * messages.
 */
```
```csharp
int reasonCode = int.Parse((string) reply["reasonCode"]);
switch (reasonCode) {
 // Success
 case 100:
 return("\nRequest ID: " + reply["requestID"]);
 // Missing field or fields
 case 101:
 return("\nThe following required fields are missing: " +
 EnumerateValues(reply, "missingField"));
 // Invalid field or fields
 case 102:
 return("\nThe following fields are invalid: " +
 EnumerateValues(reply, "invalidField"));
 // Insufficient funds
 case 204:
 return("\nInsufficient funds in the account. Please use a " +
 "different card or select another form of payment.");
 // Add additional reason codes here that you must handle more specifically.
 default:
 // For all other reason codes, such as unrecognized reason codes, or codes
 // that do not require special handling, return an empty string.
 return(String.Empty);
}

private static string EnumerateValues(Hashtable reply,
 string fieldName) {
 string val = "";
 for (int i = 0; val != null; ++i) {
 val = (string) reply[fieldName + "_" + i];
 if (val != null) {
 sb.Append(val + "\n");
 }
 }
 return(sb.ToString());
}
```
For CyberSource Advanced Merchants: Handling Decision Manager Reviews

The information in this section applies only to CyberSource Advanced merchants.

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Chapter 6  .NET 4.0 Client

Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the businessRules_ignoreAVSResult field to "true" in your combined authorization and capture request:

```java
request.put("businessRules_ignoreAVSResult", "true");
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

⚠️ You are charged only for the services that CyberSource performs.
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, CyberSource suggest that you either:

- Search for the transaction in the Business Center (depending on which one you normally use), look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.

Creating an Application Settings File

After you finish writing code for your integration, you must create an application settings file. This file must contain at least the following information:

- The directory that contains your security key
- The location of the CyberSource server

See Table 35, "Fields in the Settings File," on page 223 for a complete list of settings.

You can use the settings files that come with the sample applications as a starting point for your own settings file. See "Configuring the Test Applications," page 223 for more information.
Using XML

This section explains how to request CyberSource services by using XML.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server
- Processes the reply information

The CyberSource servers do not support persistent HTTP connections.

The instructions in this section explain how to write C# programs that request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.
Creating a Request Document

The XML client allows you to create an XML request document using any application, then send the request to CyberSource. For example, if you have a customer relationship management (CRM) system that uses XML to communicate with other systems, you can use the CRM system to generate request documents.

The request document must validate against the XML schema for CyberSource transactions. To view the schema, go to

https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

and look at the xsd file for the version of the Simple Order API you are using.

---

**Important**

Make sure that the elements in your document appear in the correct order. If they do not, your document will not validate, and your request will fail.

---

The following example shows a basic XML document for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

---

**Note**

The XML document in this example is incomplete. For complete examples, see sample.xml in the client's samples\bin directory.

---

Creating an Empty Request

Add the XML declaration and the document's root element:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.17">
</requestMessage>
```

Make sure that the API version specified at the end of the namespace is correct. For example, to communicate with version 1.19, you must use the namespace urn:schemas-cybersource-com:transaction-data-1.19. When you must update the API version, see "Updating the Client to Use a Later API Version," page 228.

---

**Note**

The XML document that you receive in the reply always has the prefix c:, for example: xmlns:c="urn:schemas-cybersource-com:transaction-data-1.17". Make sure you use an XML parser that supports namespaces.
Adding the Merchant ID

Optionally, you can add the CyberSource merchant ID to the request:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.17">
 <merchantID>infodev</merchantID>
</requestMessage>
```

This value overrides any value that you set with the merchantID configuration setting. For more information about the merchantID configuration setting, see Table 35, "Fields in the Settings File," on page 223. The merchant ID is case sensitive.

Adding Services to the Request

You next indicate the service that you want to use by creating an element for that service in the request, then setting the element's `run` attribute to `true`. For example, to request a credit card authorization:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.15">
 <merchantID>infodev</merchantID>
 <ccAuthService run="true"/>
</requestMessage>
```

Requesting a Sale

You can request multiple services by creating additional elements. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (referred to as a "sale"):

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.17">
 <merchantID>infodev</merchantID>
 <ccAuthService run="true"/>
 <ccCaptureService run="true"/>
</requestMessage>
```
Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. Most fields are child elements of container elements; for example, a `<card>` element contains the consumer’s credit card information.

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.15">
 <merchantID>infodev</merchantID>
 <billTo>
 <firstName>Jane</firstName>
 <lastName>Smith</lastName>
 </billTo>
 <item id="0">
 <unitPrice>29.95</unitPrice>
 </item>
 <card>
 <accountNumber>4111111111111111</accountNumber>
 <ccAuthService run="true"/>
 </card>
</requestMessage>
```

The example above shows only a partial list of the fields you must send. Refer to “Related Documents,” page 21 for information about the guides that list all of the fields for the services that you are requesting.

Sending the Request

Once you have created an XML request document, you can use a .NET application to send the request to CyberSource. The example that follows is written in C#.

```csharp
// The code in this section's examples is incomplete. For complete sample programs, see the source code in the client's samples\src\xml directory.
```

Creating a New Visual Studio .NET Project

To start, create a new project in Visual Studio .NET. Then you must add a reference to the client library, CyberSource.Clients.dll (located in the client’s lib directory) and to the .NET Framework System.Security.dll library.
Chapter 6 .NET 4.0 Client

Importing the Client Classes

In the code for your application, add the following import statements:

```csharp
using CyberSource.Clients;
using System;
using System.Net;
using System.Xml;
using System.Security.Cryptography
```

Sending the Request

You next read the XML request document, send the request to CyberSource, store the reply in a new XmlDocument object, and catch several exceptions that you might receive:

```csharp
try {
 XmlDocument request = new XmlDocument();
 request.Load("MyXmlDocument.xml");

 XmlDocument reply = XmlClient.RunTransaction(request);
 SaveOrderState();
 // "Using the Decision and Reason Code," page 234 describes the ProcessReply
 // method.
 ProcessReply(reply);
} catch (CryptographicException ce) {
 SaveOrderState();
 Console.WriteLine(ce.ToString());
} catch (FaultException fe) {
 SaveOrderState();
 /*
 * Some types of FaultException indicate that the transaction may have been
 * completed by CyberSource. The sample code shows how to identify these
 * exceptions. If you receive such an exception, and your request included a
 * payment service, you should use the CyberSource transaction search screens to
 * determine whether the transaction was processed.
 */
 Console.WriteLine(fe.ToString());
} catch (WebException we) {
 SaveOrderState();
 /*
 * Some types of WebException indicate that the transaction may have been completed
 * by CyberSource. The sample code shows how to identify these exceptions. If you
 * receive such an exception, and your request included a payment service, you
 * should use the CyberSource transaction search screens to determine whether the
 * transaction was processed.
 */
 Console.WriteLine(we.ToString());
}
```
In the preceding example, when an exception occurs, the exception is printed to the console. Your web store should also display a message to the consumer indicating that you were unable to process the order. The sample code for the XML client shows you how to provide feedback to the consumer.

Also, if the transaction fails, and the request did not include any payment services, you may be able to resend the transaction. The sample code for the XML client shows you how to do this.

**Interpreting the Reply**

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to consumers. Instead, present an appropriate response that tells consumers the result.

---

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.
The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
  - **ACCEPT** if the request succeeded
  - **REJECT** if one or more of the services in the request was declined
  - **REVIEW** if you use CyberSource Decision Manager and it flags the order for review. See "For CyberSource Advanced Merchants: Handling Decision Manager Reviews," page 248 for more information.
  - **ERROR** if there was a system error. See "Retrying When System Errors Occur," page 250 for important information about handling retries in the case of system errors.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

---

**Important**

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.
private static bool ProcessReply( XmlDocument reply ) {
    // The following code allows you to use XPath with the CyberSource schema, which
    // uses a non-empty default namespace.
    XmlNamespaceManager nsmgr
        = new XmlNamespaceManager( reply.NameTable );
    nsmgr.AddNamespace( "cybs", Client.CYBS_NAMESPACE );

    XmlNode replyMessage
        = reply.SelectSingleNode( "cybs:replyMessage", nsmgr );
    string decision = replyMessage.SelectSingleNode( "cybs:decision/text()", nsmgr ).Value;
    string template = GetTemplate( decision.ToUpper() );
    string content = GetContent( replyMessage, nsmgr );

    // This example writes the message to the console. Choose an appropriate display
    // method for your own application.
    Console.WriteLine( template, content );
}

private static string GetTemplate( string decision ) {
    // Retrieves the text that corresponds to the decision.
    if ("ACCEPT".Equals( decision )) {
        return( "The order succeeded.{0}" );
    } else if ("REJECT".Equals( decision )) {
        return( "Your order was not approved.{0}" );
    } else {
        return( "Your order could not be completed at this time.{0}" +
    

private static string GetContent(XmlNode replyMessage, XmlNamespaceManager nsmgr) {
    /*
    * Uses the reason code to retrieve more details to add to the template.
    * The messages returned in this example are meant to demonstrate how to retrieve
    * the reply fields. Your application should display user-friendly messages.
    */
    int reasonCode = int.Parse(textVal);
    switch (reasonCode) {
        // Success
        case 100:
            return( "\nRequest ID: " +
                replyMessage.SelectSingleNode("cybs:requestID/text()", nsmgr).Value );
        // Missing field or fields
        case 101:
            return( "\nThe following required fields are missing: " +
                EnumerateValues( replyMessage.SelectNodes("cybs:missingField/text()", nsmgr) ) );
        // Invalid field or fields
        case 102:
            return( "\nThe following fields are invalid: " +
                EnumerateValues( replyMessage.SelectNodes("cybs:invalidField/text()", nsmgr) ) );
        // Insufficient funds
        case 204:
            return( "\nInsufficient funds in the account. Please use a " +
                "different card or select another form of payment." );
        // Add additional reason codes here that you must handle more specifically.
        default:
            return( String.Empty );
    }
}

private static string EnumerateValues(XmlNodeList nodes) {
    foreach (XmlNode node in nodes) {
        sb.Append( val + "\n" );
    }
    return( sb.ToString() );
}
For CyberSource Advanced Merchants: Handling Decision Manager Reviews

The information in this section applies only to CyberSource Advanced merchants.

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the `businessRules_ignoreAVSResult` field to "true" in your combined authorization and capture request:

```xml
<businessRules>
 <ignoreAVSResult>true</ignoreAVSResult>
</businessRules>
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

---

You are charged only for the services that CyberSource performs.

---

Note
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center (depending on which one you normally use), look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.

Creating an Application Settings File

After you finish writing code for your integration, you must create an application settings file. This file must contain, at a minimum, the following information:

- The directory that contains your security key
- The location of the CyberSource server

See Table 35, "Fields in the Settings File," on page 223 for a complete list of settings.

You can use the settings files that come with the sample applications as a starting point for your own settings file. See "Configuring the Test Applications," page 223 for more information.
Using SOAP

This section explains how to request CyberSource services by using the Simple Object Access Protocol (SOAP).

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server

The CyberSource servers do not support persistent HTTP connections.

Important

- Processes the reply information

The instructions in this section explain how to write C# programs that request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Creating and Sending the Request

To use any CyberSource service, you must create and send a request that includes the required information for that service.

The following example shows basic code for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

Important

The code in this section's examples is incomplete. For complete sample programs, see the source code in the client's samples\src\soap directory.

Creating a New Visual Studio .NET Project

To get started, create a new project in Visual Studio .NET. Then you must add a reference to the client library, CyberSource.Clients.dll (located in the client's lib directory).

Importing the Client Classes
In the code for your application, add the following import statements:

```csharp
using System;
using System.Net;
using System.ServiceModel;
using System.ServiceModel.Security;
using CyberSource.Clients;
using CyberSource.Clients.SoapWebReference;
```

Creating an Empty Request
You next create a RequestMessage object that holds the request fields:

```csharp
RequestMessage request = new RequestMessage();
```

Adding the Merchant ID
You next optionally add your CyberSource merchant ID to the request:

```csharp
request.merchantID = "infodev";
```

This value overrides any value you set with the merchantID configuration setting (see Table 35, "Fields in the Settings File," on page 223). The merchant ID is case sensitive.

Adding Services to the Request
You next indicate the service that you want to use by creating an object for that service in the request, then setting the object's `run` property to `true`. For example, to request a credit card authorization:

```csharp
request.ccAuthService = new CCAuthService();
request.ccAuthService.run = "true";
```

Requesting a Sale
You can request multiple services by creating additional objects. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (referred to as a "sale"):  

```csharp
request.ccAuthService = new CCAuthService();
request.ccAuthService.run = "true";
request.ccCaptureService = new CCCaptureService();
request.ccCaptureService.run = "true";
```
Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. Most fields are properties of additional objects; for example, a `Card` object contains the consumer’s credit card information.

```csharp
BillTo billTo = new BillTo();
billTo.firstName = "Jane";
billTo.lastName = "Smith";
request.billTo = billTo;

Card card = new Card();
card.accountNumber = "4111111111111111";
request.card = card;

// there is one item in this sample
request.item = new Item[1];
Item item = new Item();
item.id = "0";
item.unitPrice = "29.95";
request.item[0] = item;
```

The example above shows only a partial list of the fields you must send. Refer to "Related Documents," page 21 for information about the guides that list all of the fields for the services that you are requesting.
Sending the Request

You next send the request to CyberSource, store the reply in a new ReplyMessage object, and handle several exceptions that you might receive.

```csharp
try {
 ReplyMessage reply = SoapClient.RunTransaction(request);
 SaveOrderState();
 // "Using the Decision and Reason Code," page 234 describes the ProcessReply
 // method.
 ProcessReply(reply);
} catch (CryptographicException ce) {
 SaveOrderState();
 Console.WriteLine(ce.ToString());
 Console.WriteLine(sbe.ToString());
} catch (WebException we) {
 SaveOrderState();
 /*
 * Some types of WebException indicate that the transaction may have been
 * completed by CyberSource. The sample code shows how to identify these exceptions.
 * If you receive such an exception, and your request included a payment service,
 * you should use the CyberSource transaction search screens to determine whether
 * the transaction was processed.
 */
 Console.WriteLine(we.ToString());
}
private static void SaveOrderState() {
 /*
 * This is where you store the order state in your system for post-transaction
 * analysis. Be sure to store the consumer information, the values of the reply
 * fields, and the details of any exceptions that occurred.
 */
}
In the preceding example, when an exception occurs, the exception is printed to the console. Your web store should also display a message to the consumer indicating that you were unable to process the order. The sample code for the SOAP client shows you how to provide feedback to the consumer.

Also, if the transaction fails, and the request did not include any payment services, you may be able to resend the transaction. The sample code for the SOAP client shows you how to do this.

Interpreting the Reply

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to consumers. Instead, present an appropriate response that tells consumers the result.

Important

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - **ACCEPT** if the request succeeded
 - **REJECT** if one or more of the services in the request was declined
 - **REVIEW** if you use CyberSource Decision Manager and it flags the order for review. See "For CyberSource Advanced Merchants: Handling Decision Manager Reviews," page 258 for more information.
 - **ERROR** if there was a system error. See "Retrying When System Errors Occur," page 260 for important information about handling retries in the case of system errors.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card
authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

Using the Decision and Reason Code
The following example shows how you can use the decision and the reason code to display an appropriate message to the consumer.

```csharp
private static bool ProcessReply( ReplyMessage reply ) {
    string template = GetTemplate( reply.decision.ToUpper() );
    string content = GetContent( reply );

    // This example writes the message to the console. Choose an appropriate display
    // method for your own application.
    Console.WriteLine( template, content );
}

private static string GetTemplate( string decision ) {
    // Retrieves the text that corresponds to the decision.
    if ("ACCEPT".Equals( decision )) {
        return( "The order succeeded.(0)" );
    }
    if ("REJECT".Equals( decision )) {
        return( "Your order was not approved.(0)" );
    }
    // ERROR, or an unknown decision
    return( "Your order could not be completed at this time.(0)" +
            "\nPlease try again later." );
}

private static string GetContent( ReplyMessage reply ) {
    /*
    * Uses the reason code to retrieve more details to add to the template.
    * The messages returned in this example are meant to demonstrate how to retrieve
    * the reply fields. Your application should display user-friendly messages.
    */
```
```csharp
int reasonCode = int.Parse( reply.reasonCode );
switch (reasonCode) {
    // Success
    case 100:
        return( "\nRequest ID: " + reply.requestID );
    // Missing field or fields
    case 101:
        return( "\nThe following required fields are missing: " +
                EnumerateValues( reply.missingField ) );
    // Invalid field or fields
    case 102:
        return( "\nThe following fields are invalid: " +
                EnumerateValues( reply.invalidField ) );
    // Insufficient funds
    case 204:
        return( "\nInsufficient funds in the account. Please use a " +
                 "different card or select another form of payment." );
    // Add additional reason codes here that you must handle more specifically.
    default:
        // For all other reason codes, such as unrecognized reason codes or codes
        // that do not require special handling, return an empty string.
        return( String.Empty );
}

private static string EnumerateValues( string[] array ) {
    foreach (string val in array) {
        sb.Append( val + "\n" );
    }
    return( sb.ToString() );
}
```
For CyberSource Advanced Merchants: Handling Decision Manager Reviews

The information in this section applies only to CyberSource Advanced merchants.

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the `businessRules_ignoreAVSResult` field to "true" in your combined authorization and capture request:

```csharp
BusinessRules businessRules = new BusinessRules();

businessRules.ignoreAVSResult = "true";

request.businessRules = businessRules;
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, the error may actually be caused by a processor rejection, not a CyberSource system error. In that case, we suggest one of these actions:

- Search for the transaction in the Business Center (depending on which one you normally use), look at the description of the error on the Transaction Detail page, and call your processor to determine if and why the transaction was rejected.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion because several common TSYS Acquiring Solutions processor responses can be returned as system errors, and only TSYS Acquiring Solutions can address these errors.

Creating an Application Settings File

After you finish writing code for your integration, you must create an application settings file. This file must contain at least the directory that contains your security key and the location of the CyberSource server.

See Table 35, "Fields in the Settings File," on page 223 for a complete list of settings. You can use the settings files that come with the sample applications as a starting point for your own settings file. See "Configuring the Test Applications," page 223 for more information.
Setting the Connection Limit

This section explains how to increase the number of simultaneous connections between the client and CyberSource.

By default, you can create only two simultaneous connections to an HTTP server. By increasing the number of connections, you can avoid a backlog of requests during times of very high transaction volume. Microsoft recommends for the connection limit a value that is 12 times the number of CPUs. For example, if you have two CPUs, you can set the connection limit to 24. To determine the optimum setting for your application, make sure to run performance tests.

Examples

You can increase the number of connections in many ways, for example by using an application- or server-specific configuration file where you can change the setting for a single or for all hosts. The examples below describe briefly some of the methods that you can use to increase connection limits.

cybs.connectionLimit

When set to a value other than -1, the cybs.connectionLimit setting in the client increases the limit for the host where you are sending the request by executing these statements on your behalf:

```csharp
ServicePoint sp = ServicePointManager.FindServicePoint(uri);
sp.ConnectionLimit = config.ConnectionLimit;
```

<connectionManagement>

You can set the connection limit by using .NET's <connectionManagement> tag. In this example, the connection limit for CyberSource's test and production hosts is 12 while the limit for all other hosts is 2:

```xml
<system.net>
  <connectionManagement>
    <add address = "https://ics2wstesta.ic3.com" maxconnection = "12" />
    <add address = "https://ics2wsa.ic3.com" maxconnection = "12" />
    <add address = "*" maxconnection = "2" />
  </connectionManagement>
</system.net>
```
DefaultConnectionLimit
You can set the connection limit for all hosts to which your application is connected before a connection is made by using the following line in your start-up code:

```csharp
ServicePointManager.DefaultConnectionLimit = your_value_here;
```

References
For more information on these and other methods to increase the connection limits, see the following Microsoft documentation:

Sample ASP.NET Code Using Visual Basic

The following sample files illustrate how to use the CyberSource Name-Value Pair client in ASP.NET using Visual Basic. The web.config file is a sample web application configuration file containing sample entries required by the client. The other files are simple web forms and their corresponding code-behind files. The Checkout.aspx file contains a pre-filled form. When you press the Submit button, it will post the entered data to Checkout2.aspx, which will send the transaction to CyberSource.

Listing 1: web.config

```xml
<?xml version="1.0"?>
<configuration>
  <appSettings>
    <add key="cybs.merchantID" value="your_merchant_id"/>
    <add key="cybs.keysDirectory" value="c:\keys"/>
    <add key="cybs.sendToProduction" value="false"/>

    <!-- Logging should normally be disabled in production as it would -->
    <!-- slow down the processing. Enable it only when troubleshooting -->
    <!-- an issue. -->
    <add key="cybs.enableLog" value="false"/>
    <add key="cybs.logDirectory" value="C:\Program Files\CyberSource Corporation\simapi-net-2.0-5.0.0\logs"/>

    <!-- Please refer to the Connection Limit section in the README for -->
    <!-- details on this setting and alternate ways to set the -->
    <!-- connection limit. When not specified or is set to -1, the -->
    <!-- client will implicitly use the connection limit currently in -->
    <!-- force, which would be 2 if none of the alternate methods are -->
    <!-- used. -->
    <add key="cybs.connectionLimit" value="-1"/>
  </appSettings>
</configuration>
```
Listing 2: Checkout.aspx

```html
<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Checkout.aspx.vb"
Inherits="NVP" Debug="true" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
    <title>Name Value Pair - Order Page</title>
</head>
<body>
<form action="Checkout2.aspx" method="post">
    Please confirm the information below and click the Submit button to perform the
    authorization.
</form>
Listing 3: Checkout.aspx.vb

Partial Class NVP
    Inherits System.Web.UI.Page
End Class

Listing 4: Checkout2.aspx

%@ Page Language="VB" AutoEventWireup="false" CodeFile="Checkout2.aspx.vb"
Inherits="NVP2" Debug="true" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
    <title>Name Value Pair - Receipt</title>
</head>
<body>
    <form id="form1" runat="server">
        <div>
        </div>
    </form>
</body>
</html>
Imports CyberSource.Clients.NVPClient

Partial Class NVP2
    Inherits System.Web.UI.Page

    Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
        Handles MyBase.Load

        ' Declare the request hashtable
        Dim oRequest As New Hashtable

        ' Add non-user input fields
        oRequest.Add("ccAuthService_run", "true")
        oRequest.Add("merchantReferenceCode", "MRC-5254555")

        ' Add user input fields from post
        oRequest.Add("billTo_firstName", Request.Form("billTo_firstName"))
        oRequest.Add("billTo_lastName", Request.Form("billTo_lastName"))
        oRequest.Add("billTo_street1", Request.Form("billTo_street1"))
        oRequest.Add("billTo_city", Request.Form("billTo_city"))
        oRequest.Add("billTo_state", Request.Form("billTo_state"))
        oRequest.Add("billTo_postalCode", Request.Form("billTo_postalCode"))
        oRequest.Add("billTo_country", Request.Form("billTo_country"))
        oRequest.Add("card_accountNumber", Request.Form("card_accountNumber"))
        oRequest.Add("card_expirationMonth", Request.Form("card_expirationMonth"))
        oRequest.Add("card_expirationYear", Request.Form("card_expirationYear"))
        oRequest.Add("item_0_unitPrice", Request.Form("item_0_unitPrice"))
        oRequest.Add("purchaseTotals_currency", "USD")

        ' Declare the reply hashtable
        Dim varReply As New Hashtable

        ' Run the transaction
        varReply = CyberSource.Clients.NVPClient.RunTransaction(oRequest)

        ' Print reply data to the browser
        Response.Write("<br>reasonCode: " & varReply("reasonCode").ToString)
        Response.Write("<br>Decision: " & varReply("decision").ToString)
        Response.Write("<br>RequestID: " & varReply("requestID").ToString)
    End Sub

End Class
Choosing Your API and Client

API Variations

Choose either of these options of the Simple Order API:

- Name-value pairs: simpler to use. The test that you run immediately after installing the client uses name-value pairs.

- XML: requires you to create and parse XML documents

To introduce new API fields and features, CyberSource regularly updates the Simple Order API. You can update your existing client to work with the new API version. For the latest version of the server-side API for the CyberSource services, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor. When configuring the client, indicate the version of the API (not the current version of the client) you want to use in the targetAPIVersion configuration property. For example, to use the 1.18 version of the API, set the property to 1.18. For more information, see "targetAPIVersion," page 273.
Client Versions

The client version is the version of the client-side code that you use to access the CyberSource services. This version is different from the API version.

A direct upgrade path from the 1.5.0 version of the Web Services Client for Java to the most recent version of the client is not available because the client was redesigned starting with the 2.0.0 release.

Sample Code

The client package contains two samples that you can use to test the client:

- **Name-value pairs:** See AuthCaptureSample.java in `<main directory>/samples/nvp/src/com/cybersource/sample`.

- **XML:** Before implementing your code to process XML requests, CyberSource recommends that you examine the name-value pair sample code listed above.

For the XML sample code, see AuthSample.java in `<main directory>/samples/xml/src/com/cybersource/sample`. 
Basic Java Program Example

The example below shows the primary code required to send a Simple Order API request for credit card authorization and process the reply. The example uses name-value pairs. For a complete example, see the sample program included in the package (see "Sample Code," page 268). "Using Name-Value Pairs," page 277 shows you how to create the code.

```java
package com.cybersource.sample;
import java.util.*;
import com.cybersource.ws.client.*;

public class SimpleAuthSample
{

 public static void main(String[] args)
 {
 Properties props = Utility.readProperties(args);
 HashMap request = new HashMap();

 // In this sample, we are processing a credit card authorization.
 request.put("ccAuthService_run", "true");

 // Add required fields
 request.put("merchantReferenceCode", "MRC-14344");
 request.put("billTo_firstName", "Jane");
 request.put("billTo_lastName", "Smith");
 request.put("billTo_street1", "1295 Charleston Road");
 request.put("billTo_city", "Mountain View");
 request.put("billTo_state", "CA");
 request.put("billTo_postalCode", "94043");
 request.put("billTo_country", "US");
 request.put("billTo_email", "jsmith@example.com");
 request.put("card_accountNumber", "4111111111111111");
 request.put("card_expirationMonth", "12");
 request.put("card_expirationYear", "2010");
 request.put("purchaseTotals_currency", "USD");
 }
}
Installing and Testing the Client

Minimum System Requirements

- This client is supported on the Windows 2000/XP/2003, Linux, and Solaris platforms.

- The minimum Java SDK supported are Oracle or IBM Java SDK 1.2 or later. Depending on the package that you choose, you also need one of these:
 - For Oracle Java SDK versions earlier than 1.4.0, you need the Java Secure Socket Extension (JSSE) 1.0.3_02 or later (see http://java.sun.com/products/jsse).
 - For IBM Java SDK, you need IBMJSEE 1.0.2 or later.

```java
// This sample order contains two line items.
request.put( "item_0_unitPrice", "12.34" );
request.put( "item_1_unitPrice", "56.78" );

// Add optional fields here according to your business needs.
// For information about processing the reply,
try {
    HashMap reply = Client.runTransaction( request, props );
}

catch (ClientException e) {
    if (e.isCritical())
    {
        handleCriticalException( e, request );
    }
}

catch (FaultException e) {
    if (e.isCritical())
    {
        handleCriticalException( e, request );
    }
}
```
Transaction Security Keys

The first thing you must do is create your security key. The client uses the security key to add a digital signature to every request that you send. This signature helps ensure that no one else can use your CyberSource account to process orders. You specify the location of your key when you configure the client.

Important

You must generate two transaction security keys—one for the CyberSource production environment and one for the test environment. For information about generating and using security keys, see *Creating and Using Security Keys* (PDF | HTML).

Warning

You must protect your security key to ensure that your CyberSource account is not compromised.
Chapter 7 Java Client

Installing the Client

To install the client:

Step 1 Create a target directory for the client.

Step 2 Download the latest version of the client.
 The package covers Windows, Linux, and Solaris.

Step 3 Unzip the package to your target directory.
 `<target directory>/simapi-java-n.n.n`
 where `n.n.n` represents the version of the client package.

Step 4 To configure the client, see "Configuring Client Properties," page 272 below.

Step 5 To test the client, see "Testing the Client," page 275.

Step 6 When done, see "Going Live," page 276.

Step 7 Create your own code for requesting CyberSource services by following either "Using
 Name-Value Pairs," page 277 or "Using XML," page 286.

Configuring Client Properties

The client requires certain properties to run transactions. The samples provided in the
`<main directory>/samples/nvp` and `<main directory>/samples/xml` folders
read a file called `cybs.properties` into a Properties object which is passed to the
runTransaction() method. Table 36, "Configuration Properties," on page 273 describes the
properties that you can set. Note that the default `cybs.properties` file that comes with
the client package does not include all of the properties listed in the table. It includes only
the ones required to run the sample.

The client also includes additional property configuration capabilities. For example, you
can configure for multiple merchants or configure using system properties. For more
information, see "Advanced Configuration Information," page 296.

For Java SDK 1.4.x, the client sets the system properties `https.proxyHost`
and `https.proxyPort` to the values of the client properties `proxyHost` and
`proxyPort`. If these system properties are defined beforehand, possibly by
using the `-D` option in the command line, the system properties will take
precedence.

Note
Table 36 Configuration Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>merchantID</td>
<td>This client uses this value if you do not specify a merchant ID in the request itself. This value is case sensitive.</td>
</tr>
<tr>
<td>keysDirectory</td>
<td>Location of the merchant’s security keys. Although UNC paths are allowed, for faster request processing, CyberSource recommends that you store your key locally. You must use forward slashes even in a Windows environment (for example: c:/keys). The client includes a keys directory that you can use.</td>
</tr>
<tr>
<td>sendToProduction</td>
<td>Flag that indicates whether the transactions for this merchant should be sent to the production server. Use one of these values:</td>
</tr>
<tr>
<td></td>
<td>- false: Send to the test server. (default setting)</td>
</tr>
<tr>
<td></td>
<td>- true: Send to the production server</td>
</tr>
<tr>
<td>targetAPIVersion</td>
<td>Version of the Simple Order API to use, such as 1.18. For the list of available versions, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor. Changes in each version are described in the Simple Order API Release Notes. Do not set this property to the current version of the client. See "Client Versions," page 268 for more information.</td>
</tr>
<tr>
<td>keyFilename</td>
<td>Name of the security key file name in the format <code><security_key_name>.p12</code>.</td>
</tr>
<tr>
<td>serverURL</td>
<td>Alternative server URL to use. For more information, see "Using Alternate Server Properties," page 296. Give the complete URL because it will be used exactly as specified here.</td>
</tr>
<tr>
<td>namespaceURI</td>
<td>Alternative namespace URI to use. Give the complete namespace URI because it will be used exactly as specified here. For more information, see "Using Alternate Server Properties," page 296.</td>
</tr>
<tr>
<td>enableLog</td>
<td>Flag directing the client to log transactions and errors. Use one of these values:</td>
</tr>
<tr>
<td></td>
<td>- false: Do not enable logging (default setting)</td>
</tr>
<tr>
<td></td>
<td>- true: Enable logging</td>
</tr>
</tbody>
</table>

Important Logging can cause very large log files to accumulate. Therefore, CyberSource recommends that you use logging only when troubleshooting problems. To comply with all Payment Card Industry (PCI) and Payment Application (PA) Data Security Standards regarding the storage of credit card and card verification number data, the logs that are generated contain only masked credit card and card verification number data (CVV, CVC2, CVV2, CID, CVN).

Follow these guidelines:

- Use debugging temporarily for diagnostic purposes only.
- If possible, use debugging only with test credit card numbers.
- Never store clear text card verification numbers.
- Delete the log files as soon as you no longer need them.
- Never send email to CyberSource containing personal and account information, such as customers' names, addresses, card or check account numbers, and card verification numbers.

For more information about PCI and PABP requirements, see www.visa.com/cisp.
Table 36 Configuration Properties (Continued)

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logDirectory</td>
<td>Directory to which to write the log file. UNC paths are allowed. You must use forward slashes even in a Windows environment, for example: \c:/logs. The client does not create this directory; instead you must specify an existing directory. The client includes a logs directory that you can use.</td>
</tr>
<tr>
<td>logFilename</td>
<td>Log file name. The client uses cybs.log by default.</td>
</tr>
<tr>
<td>logMaximumSize</td>
<td>Maximum size in megabytes for the log file. The default value is "10". When the log file reaches the specified size, it is archived into cybs.log.<yyyyymmdd>hhmmssxxxx> and a new log file is started. The xxxx indicates milliseconds.</td>
</tr>
<tr>
<td>timeout</td>
<td>Important Ignore this property. Instead set a specific amount of time that is acceptable to your business. Number of seconds to wait for reply before timing out. Default value is 130. This property does not have an effect if useHttpClient is false and you are using cybsclients14.jar.</td>
</tr>
<tr>
<td>useHttpClient</td>
<td>Flag directing the client to use Apache HttpClient for the HTTPS communication. Use one of these values:</td>
</tr>
<tr>
<td></td>
<td>- false: (default setting) Do not use Apache HttpClient. Use built-in HttpURLConnection. The timeout property does not have an effect if useHttpClient is false and you are using cybsclients14.jar.</td>
</tr>
<tr>
<td></td>
<td>- true: Use Apache HttpClient. When useHttpClient is true, your CLASSPATH must include the three commons-*.jar files shipped with the package.</td>
</tr>
<tr>
<td>proxyHost</td>
<td>Optional host name or IP address of the HTTP proxy server.</td>
</tr>
<tr>
<td>proxyPort</td>
<td>Port number of the proxy server. The default is 8080. This property is ignored if you do not specify proxyHost.</td>
</tr>
<tr>
<td>proxyUser</td>
<td>User name used to authenticate against the proxy server if required.</td>
</tr>
<tr>
<td>proxyPassword</td>
<td>Password used to authenticate against the proxy server if required.</td>
</tr>
</tbody>
</table>
Testing the Client

After you install and configure the client, test it to ensure the installation was successful.

To test the client:

Step 1 If you are using the Solaris or Linux platform, set the execute permission on the runSample.sh script, for example: chmod 755 runSample.sh

Step 2 If you are using Java SDK 1.5 or later, replace cybsclients14.jar with cybsclients15.jar in runSample.sh.

Step 3 At a command prompt, type this line:

Windows runSample.bat
Unix or Linux runSample.sh

If JAVA_HOME is defined, the script uses <JAVA_HOME>/bin/java. Otherwise, it uses whatever java is in the path.

If the client is installed correctly, the requests and replies for a credit card authorization and a follow-on capture appear.

If the client is not installed correctly, a fault exception appears:

- Configuration exception if the keys directory in the cybs.properties file is incorrect.
- javax.net.ssl.SSLException untrusted server cert chain: see "Importing the Root CA Certificate," page 299.
Going Live

When you finish configuring and testing the client, your deployment is ready to go live.

Important

Make sure that your client is set to send transactions to the production server, not the test server. See the description of "sendToProduction," page 273.

CyberSource Essentials Merchants

If you use CyberSource Essentials services, you can use the Business Center site to go live. For a description of the process of going live, see the “Steps for Getting Started” section in *Getting Started with CyberSource Essentials*.

Important

You must also configure your client so that it sends transactions to the production server and not the test server. See the description of the sendToProduction property in Table 36, "Configuration Properties," on page 273.

After your deployment goes live, use real card numbers and other data to test every card type you support. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Process an authorization, then capture the authorization, and later refund the money. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.

CyberSource Advanced Merchants

If you use CyberSource Advanced services, see the “Steps for Getting Started” chapter in *Getting Started with CyberSource Advanced* for information about going live.

When your deployment goes live, your CyberSource account is updated so that you can send transactions to the CyberSource production server. If you have not already done so, you must provide your banking information to CyberSource so that your processor can deposit funds to your merchant bank account.

After CyberSource confirms that your account is live, make sure that you update your system so that it can send requests to the production server (ics2wsa.ic3.com) using your security keys for the production environment. The test server (ics2wstest.a.ic3.com) cannot be used for real transactions. For more information about sending transactions to the production server, see the description of the configuration property "sendToProduction," page 273.

After your deployment goes live, use real card numbers and other data to test every card type, currency, and CyberSource application that your integration supports. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Use your bank statements to verify that money is deposited into
and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.

Using Name-Value Pairs

This section explains how to write Java programs that request CyberSource services by using name-value pairs.

Requesting CyberSource Services

To request CyberSource services, write code that can perform these actions:

- Collect information for the CyberSource services that you will use
- Assemble the order information into requests
- Send the requests to the CyberSource server

Important

The CyberSource servers do not support persistent HTTP connections.

- Process the reply information

For the list of API fields that you must add to your requests and will see in the replies, use the guide that describes the service. See "Related Documents," page 21.

The code in this section's example is incomplete. For a complete sample program, see the AuthCaptureSample.java file in `<main directory>/samples/nvp/src/com/cybersource/sample directory.`

Note

If you make any changes to the AuthCaptureSample.java sample, you must rebuild the sample before using it. Use the compileSample batch file or shell script provided in the sample directory.

If you use Java SDK 1.5 or later, replace cybsclients14.jar with cybsclients15.jar in the compileSample script.
Creating and Sending Requests

To use any CyberSource service, you must create and send a request that includes the required information for that service. The following example shows basic code for requesting a credit card authorization. In this example, Jane Smith is buying an item for $29.95.

Importing the Client Classes

Add the following import statements:

```java
import java.util.*;
import com.cybersource.ws.client.*;
```

Depending on your application, you might need to add more import statements.

Loading the Configuration File

Load the configuration file:

```java
Properties props = Utility.readProperties( args );
```

The sample reads the configuration settings from the properties file specified in the command line. If you do not specify a file, the sample looks for the file `cybs.properties` in the current directory.

Creating an Empty Request

Create a hashtable that holds the request fields:

```java
HashMap request = new HashMap();
```

Adding Services to the Request

Indicate the service that you want to use by adding a field to the request, such as a credit card authorization:

```java
request.put( "ccAuthService_run", "true" );
```

You can request multiple services by adding additional fields to the request. When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request. You are charged only for the services that CyberSource performs.
Example For All Merchants: Requesting Multiple Services
For example, if you fulfill the order immediately, you can request a credit card authorization and capture together, called a sale. If the authorization service fails, CyberSource does not process the capture service. The reply you receive includes reply fields only for the authorization:

request.put("ccAuthService_run", "true");
request.put("ccCaptureService_run", "true");

Example For Merchants Using CyberSource Advanced Services: Requesting Multiple Services
Many CyberSource services include fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource may decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these declined authorizations. To do so, in your combined authorization and capture request, set the businessRules_ignoreAVSResult field to true:

request.put("businessRules_ignoreAVSResult", "true");

This line tells CyberSource to process the capture even if the AVS result causes CyberSource to decline the authorization. In this case, the reply would contain fields for the authorization and the capture.

Adding Service-Specific Fields to the Request
Add the fields that are used by the services you are requesting. If you request multiple services that share fields, add the field only once.

request.put("billTo_firstName", "Jane");
request.put("billTo_lastName", "Smith");
request.put("card_accountNumber", "4111111111111111");
request.put("item_0_unitPrice", "29.95");

The example above shows only a partial list of the fields you must send. The developer guides for the service you are using contains a complete list of API request and reply fields available for that service.
Sending the Request

Send the request to CyberSource, store the reply in a new hashtable, and interpret the exceptions that you might receive:

```java
try {
    HashMap reply = Client.runTransaction( request, props );
    // "Using the Decision and Reason Code Fields," page 282 illustrates how you
    // might design a ProcessReply() method to handle the reply.
    processReply( reply );
} catch (FaultException e) {
    System.out.println( e.getLogString() );
} catch (ClientException e) {
    System.out.println( e.getLogString() );
}
```

In the example above, when an exception occurs, the exception is printed to the console. Your web store should also display to the customer a message indicating that you were unable to process the order. "Using the Decision and Reason Code Fields," page 282 shows how to provide feedback to the customer.

Interpreting Replies

After your request is processed by the CyberSource server, it sends a reply message that contains information about the services you requested. You receive fields relevant to the services that you requested and to the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Important

CyberSource may add reply fields and reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply. Parse the reply data according to the names of the fields instead of their order in the reply.
These are the most important reply fields:

- **decision**: A one-word description of the results of your request. The possible values are as follows:
 - **ACCEPT** if the request succeeded.
 - **REJECT** if one or more of the services in the request was declined.
 - **REVIEW** (Advanced package only) if you use Decision Manager, and the order is marked for review. For more information, see "Handling Decision Manager Reviews (CyberSource Advanced Services Only)," page 284.
 - **ERROR** if a system error occurred. For more information, see "Handling System Errors," page 284.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the *Credit Card Services User Guide* for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.
Using the Decision and Reason Code Fields

This example shows how you can use the decision and the reason code to display an appropriate message to the customer.

Note

The processReply() method described below is not included in the sample code in the client package.

```java
private static boolean processReply( HashMap reply )
throws ClientException {
    MessageFormat template = new MessageFormat(
        getTemplate( (String) reply.get( "decision" ) ) );
    Object[] content = { getContent( reply ) };
    /*
     * This example writes the message to the console. Choose an appropriate display
     * method for your own application.
     */
    System.out.println( template.format( content ) );
}

private static String getTemplate( String decision ) {
    // Retrieves the text that corresponds to the decision.
    if ("ACCEPT".equalsIgnoreCase( decision )) {
        return( "Your order was approved.{0}" );
    }
    if ("REJECT".equalsIgnoreCase( decision )) {
        return( "Your order was not approved.{0}" );
    }
    // ERROR
    return( "Your order cannot be completed at this time.{0}" +
            "\nPlease try again later." );
}

private static String getContent( HashMap reply )
throws ClientException {
    /*
     * Uses the reason code to retrieve more details to add to the template.
     * The strings returned in this sample are meant to demonstrate how to retrieve
     * the reply fields. Your application should display user-friendly messages.
     */
    int reasonCode =
        Integer.parseInt( (String) reply.get( "reasonCode" ) );
    switch (reasonCode) {
```
```java
// Success
    case 100:
        return( "\nRequest ID: " + (String) reply.get( "requestID" );
// Missing field or fields
    case 101:
        return( "\nThe following required field(s) are missing:\n" +
                enumerateValues( reply, "missingField" ) );

// Invalid field or fields
    case 102:
        return( "\nThe following field(s) are invalid:\n" +
                enumerateValues( reply, "invalidField" ) );

// Insufficient funds
    case 204:
        return( "\nInsufficient funds in the account. Please use a different " +
                "card or select another form of payment." );

// Add additional reason codes here that you must handle specifically.
    default:
        // For all other reason codes (for example, unrecognized reason codes, or
        // codes that do not require special handling), return an empty string.
        return( "" );
    }
}

private static String enumerateValues( Map reply, String fieldName ) {  
    StringBuffer sb = new StringBuffer();
    String key, val = "";
    for (int i = 0; ; ++i) {
        key = fieldName + "_" + i;
        if (!reply.containsKey( key )) {  
            break;
        } 
        val = (String) reply.get( key );
        if (val != null) {  
            sb.append( val + "\n" );
        } 
    } 
    return( sb.toString() );
}
```
Handling Decision Manager Reviews (CyberSource Advanced Services Only)

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.

Handling System Errors

You must design your transaction management system to correctly handle CyberSource system errors, which occur when you successfully receive a reply, but the decision field is ERROR. For more information about the decision, see "Interpreting Replies," page 280. The error may indicate a valid CyberSource system error or a payment processor rejection because of invalid data.
Offline Transactions
CyberSource recommends that you resend the request two or three times only, waiting a longer period of time between each attempt. Determine what is most appropriate for your business situation.

Example Handling System Errors for Offline Transactions
After the first system error response, wait a short period of time, perhaps 30 seconds, before resending the request. If you receive the same error a second time, wait a longer period of time, perhaps 1 minute, before resending the request. If you receive the same error a third time, you may decide to try again after a longer period of time, perhaps 2 minutes.

If you are still receiving a system error after several attempts, the error may be caused by a processor rejection instead of a CyberSource system error. In this case, CyberSource recommends one of these options:

- Find the transaction in the Business Center. After looking at the description of the error on the transaction details page, call your processor to determine if and why the transaction was rejected. If your processor is TSYS Acquiring Solutions, you may want to follow this option because this processor can return several system errors that only it can address.
- Contact CyberSource Customer Support to determine whether the error is caused by a CyberSource system issue.

Online Transactions
For online transactions, inform the customer that an error occurred and request that the customer attempts to resubmit the order.
Using XML

This section explains how to write Java programs that request CyberSource services by using XML.

Requesting CyberSource Services

To request CyberSource services, write code that can perform these actions:

- Collect information for the CyberSource services that you will use
- Assemble the order information into requests
- Send the requests to the CyberSource server

The CyberSource servers do not support persistent HTTP connections.

- Process the reply information

For the list of API fields that you must add to your requests and will see in the replies, use the guide that describes the service. See "Related Documents," page 21.

To understand how to request CyberSource services, CyberSource recommends that you examine the name-value pair sample code provided in AuthCaptureSample.java before implementing your code to process XML requests. The sample code file is located in the <main directory>/samples/nvp/src/com/cybersource/sample directory.

The code in this section’s example is incomplete. For a complete sample program, see the AuthSample.java file in the <main directory>/samples/xml/src/com/cybersource/sample directory.

If you make changes to the AuthSample.java sample, you must rebuild the sample before using it by using the compileSample batch file or shell script provided in the xmlsample directory.

If you use Java SDK 1.5 or later, replace cybsclients14.jar with cybsclients15.jar in the compileSample script.
Creating Requests

The client enables you to create an XML request document by using any application and sending the request to CyberSource. For example, if you have a customer relationship management (CRM) application that uses XML to communicate with other applications, you can use your CRM to generate request documents.

You must validate the request document against the XML schema for CyberSource transactions. To view the schema, look at the `xsd` file for your version of the Simple Order API.

Important

If the elements in your document do not appear in the correct order, your document will not be validated, and your request will fail.

The following example, from creating an empty request to adding service-specific fields, shows a basic XML document for requesting a credit card authorization. In this example, Jane Smith is buying an item for $29.95. The XML document in this example is incomplete. For a complete example, see the `auth.xml` file in the `samples/xml` directory.

Creating an Empty Request

Start with the XML declaration and the root element:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
</requestMessage>
```

When you construct a request, indicate the namespace for the elements. The namespace must use the same API version that you specify in the configuration settings.

Example

API version: `targetAPIVersion=1.18`

Namespace: `urn:schemas-cybersource-com:transaction-data-1.18`
Adding Services to the Request

Add the services that you want to use by creating an element for that service and setting the element’s run attribute to true. This example shows a credit card authorization:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <ccAuthService run="true"/>
</requestMessage>
```

You can request multiple services by creating additional elements. When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request. You are charged only for the services that CyberSource performs.

Example For All Merchants:
Requesting Multiple Services in a Request

If you fulfill orders immediately, you can request a credit card authorization and capture together, called a sale. If the authorization service fails, CyberSource does not process the capture service. The reply that you receive contains only authorization reply fields:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <ccAuthService run="true"/>
  <ccCaptureService run="true"/>
</requestMessage>
```

Example Only for Merchants Using CyberSource Advanced Services:
Requesting Multiple Services in a Request

Many CyberSource services use fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource may decline the authorization based on the address or card verification results. Depending on your business needs, you might choose to capture these declined authorizations. To do so, in your combined authorization and capture request, you must set the **businessRules_ignoreAVSResult** field to true:

```xml
<businessRules>
  <ignoreAVSResult>true</ignoreAVSResult>
</businessRules>
```

These lines tell CyberSource to process the capture even if the address verification result causes CyberSource to decline the authorization. In this case, the reply would contain fields for the authorization and the capture.
Adding Service-Specific Fields to the Request

Add the fields that are used by the services you are requesting. Most fields are child elements of container elements. For example, a `<card>` element contains the customer’s credit card information. This example shows a partial list of possible fields. The developer guides for the service you are using contains a complete list of API request and reply fields for that service.

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <billTo>
    <firstName>Jane</firstName>
    <lastName>Smith</lastName>
  </billTo>
  <item id="0">
    <unitPrice>29.95</unitPrice>
  </item>
  <card>
    <accountNumber>4111111111111111</accountNumber>
  </card>
  <ccAuthService run="true"/>
</requestMessage>
```

Sending Requests

Once you have created an XML request document, you can use Java to send the request to CyberSource.

Importing the Client Classes

Add the following import statements:

```java
import java.io.*;
import java.util.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.xml.sax.*;
import com.cybersource.ws.client.*;
```

Depending on your application, you might need to add more import statements.
Chapter 7 Java Client

Loading the Configuration File
Load the configuration file:

```java
Properties props = Utility.readProperties( args );
```

The sample reads the configuration settings from the properties file specified in the command line. If you do not specify a file, the sample looks for the file `cybs.properties` in the current directory.

Sending the Request
Send the request to CyberSource, store the reply in a new `Document` object, and interpret the exceptions that you might receive:

```java
try {
    Document request = readRequest( props, args );
    // The sample reads the files specified in the command line, or if no files are specified, the sample looks for cybs.properties and auth.xml in the current directory.
    Document reply = XMLClient.runTransaction( request, props );
    // "Using the Decision and Reason Code Fields," page 282 illustrates how you might design a ProcessReply() method to handle the reply.
    processReply( reply );
} catch (FaultException e) {
    e.printStackTrace();
    System.out.println( e.getLogString() );
} catch (ClientException e) {
    e.getInnerException().printStackTrace();
    System.out.println( e.getLogString() );
}
```

In the preceding example, when an exception occurs, the exception is printed to the console. Your web store should also display a message to the customer indicating that you were unable to process the order. "Using the Decision and Reason Code Fields," page 282 shows how to provide feedback to the customer.
Interpreting Replies

The XML document that you receive in the reply always uses a prefix of \(c:\) for example: \(xmlns:c=\"urn:schemas-cybersource-com:transaction-data-1.18\" \). Make sure you use an XML parser that supports namespaces.

After your request is processed by the CyberSource server, it sends a reply message that contains information about the services you requested. You receive fields relevant to the services that you requested and to the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Important CyberSource may add reply fields and reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply. Parse the reply data according to the names of the fields instead of their order in the reply.

These are the most important reply fields:

- **decision**: A one-word description of the results of your request:
 - ACCEPT if the request succeeded.
 - REJECT if one or more of the services in the request was declined.
 - REVIEW (Advanced package only) if you use Decision Manager, and the order is marked for review. For more information, see "Handling Decision Manager Reviews (CyberSource Advanced Merchants)," page 294.
 - ERROR if a system error occurred. For more information, see "Handling System Errors," page 294.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.
Using the Decision and Reason Code

This example shows how you can use the decision and the reason code to display an appropriate message to the customer.

Note

The processReply() method described below is not included in the sample code in the client package.

```java
private static boolean processReply( Document reply )
    throws ClientException {
    // The following code allows you to use XPath with the CyberSource schema, which
    // uses a non-empty default namespace.
    XPathAPI xp = new XPathAPI();
    Element nsNode = reply.createElement( "nsNode" );
    // The version number (1.20) at the end of the namespaceURI below is an example.
    // Change it to the version of the API that you are using.
    nsNode.setAttribute("xmlns:cybs", "urn:schemas-cybersource-com:transaction-data
    -1.20" );
    Node replyMessage =
        getNode( xp, reply, "cybs:replyMessage", nsNode );
    String decision =
        getText( xp, replyMessage, "cybs:decision", nsNode );
    MessageFormat template =
        new MessageFormat( getTemplate( decision ) );
    Object[] content = { getContent( xp, replyMessage, nsNode ) };
    /*
     * This example writes the message to the console. Choose an appropriate display
     * method for your own application.
     */
    System.out.println( template.format( content ) );
}

private static String getTemplate( String decision ){
    // Retrieves the text that corresponds to the decision.
    if ("ACCEPT".equalsIgnoreCase( decision )) {
        return( "Your order was approved.(0)*" );
    }
    if ("REJECT".equalsIgnoreCase( decision )) {
        return( "Your order was not approved.(0)*" );
    }
    // ERROR, or unknown decision
    return( "Your order cannot be completed at this time.(0)" +
            "\nPlease try again later." );
}
```
private static String getContent(
 XPathAPI xp, Node ctxNode, Node nsNode)
 throws XMLClientException {
 /*
 * Uses the reason code to retrieve more details to add to the template.
 * The strings returned in this sample are meant to demonstrate how to retrieve
 * the reply fields. Your application should display user-friendly messages.
 */
 int reasonCode = Integer.parseInt(
 getText(xp, ctxNode, "cybs:reasonCode", nsNode));
 switch (reasonCode) {
 // Success
 case 100:
 return ("\nRequest ID: " +
 getText(xp, ctxNode, "cybs:requestID", nsNode));
 // Missing field or fields
 case 101:
 return("\nThe following required field(s) are missing: \n" +
 enumerateValues(xp, ctxNode, "cybs:missingField", nsNode));
 // Invalid field or fields
 case 102:
 return("\nThe following field(s) are invalid:
" +
 enumerateValues(xp, ctxNode, "cybs:invalidField", nsNode));
 // Insufficient funds
 case 204:
 return("\nInsufficient funds in the account. Please use a " +
 "different card or select another form of payment."
);
 // Add additional reason codes here that you must handle specifically.
 default:
 // For all other reason codes (for example, unrecognized reason codes, or
 // codes that do not require special handling), return an empty string.
 return("");
 }
}

private static String enumerateValues(
 XPathAPI xp, Node ctxNode, String xpath, Node nsNode)
 throws TransformerException {
 try {
 StringBuffer sb = new StringBuffer();
 NodeList list =
 xp.selectNodeList(ctxNode, xpath + " /text()", nsNode);
 if (list != null) {
 for (int i = 0, len = list.getLength(); i < len; ++i) {
 sb.append(list.item(i).getNodeValue() + "\n");
 }
 }
 return(sb.toString());
 }
}
Handling Decision Manager Reviews (CyberSource Advanced Merchants)

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.

Handling System Errors

You must design your transaction management system to correctly handle CyberSource system errors, which occur when you successfully receive a reply, but the decision field is ERROR. For more information about the decision, see "Interpreting Replies," page 291. The error may indicate a valid CyberSource system error or a payment processor rejection because of invalid data.
Offline Transactions
CyberSource recommends that you resend the request two or three times only, waiting a longer period of time between each attempt. You should determine what is most appropriate for your business situation.

Example After the first system error response, wait a short period of time, perhaps 30 seconds, before resending the request. If you receive the same error a second time, wait a longer period of time, perhaps 1 minute, before resending the request. If you receive the same error a third time, you may decide to try again after a longer period of time, perhaps 2 minutes.

If you are still receiving a system error after several attempts, the error may be caused by a processor rejection instead of a CyberSource system error. In this case, CyberSource recommends one of these options:

- Find the transaction in the Business Center. After looking at the description of the error on the transaction details page, call your processor to determine if and why the transaction was rejected. If your processor is TSYS Acquiring Solutions, you may want to follow this option because this processor can return several system errors that only it can address.

- Contact CyberSource Customer Support to determine whether the error is caused by a CyberSource system issue.

Online Transactions
For online transactions, inform the customer that an error occurred and request that the customer attempts to resubmit the order.
Advanced Configuration Information

Using Alternate Server Properties

Use the serverURL and namespaceURI properties if CyberSource changes the convention used to specify the server URL and namespace URI, but has not updated the client yet. With these properties, you will be able to configure your existing client to use the new server and namespace conventions required by the CyberSource server.

For example, these are the server URLs and namespace URI for accessing the CyberSource services with the Simple Order API version 1.18:

- **Test server URL:**

 https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

- **Production server URL:**

 https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

- **Namespace URI:**

If you view the above URLs in a web browser, a list of the supported API versions and the associated schema files are displayed.

Configuring for Multiple Merchant IDs

If you have multiple merchant IDs, or if you are a reseller handling multiple merchants, you can set different properties settings for different merchant IDs in the Properties object that you pass to `runTransaction()`. When using the samples provided in the client package, set the properties in `cybs.properties` file.

To specify the settings for a specific merchant, all the properties except `merchantID` can be prefixed with `"<merchantID>"`. The merchant ID is case sensitive. To enable logging only for `merchant123`, set the `enableLog` property to `true` for all requests that have `merchant123` as the merchant ID:

```java
merchant123.enableLog=true
enableLog=false
```

The client disables logging for all other merchants.
Using System Properties

Although the properties in the Properties object passed to runTransaction() normally take precedence over the System properties, you can specify the settings that the client uses with the System properties. A system property will be used only if the Properties object passed to runTransaction() does not already include that property.

To use System properties for merchant123, prefix each system property with cybs., for example:

```
java -Dcybs.enableLog=false -Dcybs.merchant123.enableLog=true myApplication
```

Resolving Connection Issues

If you are using a Oracle Java SDK version earlier than 1.4.0 or an IBM Java SDK, you may exceptions when attempting to connect to external sites with HTTPS.

If you encounter the following exception message when testing the client, follow the procedure for your SDK:

```
java.net.MalformedURLException: unknown protocol: https
```

Oracle Java SDK version earlier than 1.4.0

This procedure is only a guideline. For the latest information, consult the Oracle JSSE documentation.

Step 1 Download the Oracle JSSE from http://java.sun.com/products/jsse/.

Step 2 Extract the following files from the Oracle JSSE package:

- jcert.jar
- jnet.jar
- jsse.jar

Step 3 Copy the jar files into your Java installation's jre/lib/ext directory.

Step 4 Open jre/lib/security/java.security and locate the following line with the highest value for N:

```
security.provider.N=<some provider class name>
```

Step 5 Add the following line where NN is equal to N + 1:

```
security.provider.NN=com.sun.net.ssl.internal.ssl.Provider
```
Step 1 Download the IBMJSSE from IBM's web site or obtain it from your IBM development kit CDs.

Step 2 Extract the ibmjsse.jar file.

Step 3 Obtain the ibmpkcs.jar file.
The file should be included in the IBM development kit.

Step 4 Copy both jar files into your Java installation’s jre/lib/ext directory.

Step 5 Open jre/lib/security/java.security and locate the following line with the highest value for N:
```
security.provider.N=<some provider class name>
```

Step 6 Add the following line where NN is equal to N + 1:
```
security.provider.NN=com.ibm.jsse.JSSEProvider
```

Step 7 Save and close the file.

IBM Java SDK

This procedure is only a guideline. For the latest information, consult the IBMJSSE documentation.

Step 6 Save and close the file.
Importing the Root CA Certificate

If you encounter this exception message when testing the client, you must perform the following steps to import the root CA certificate into \texttt{cacerts}:

\begin{verbatim}
javax.net.ssl.SSLException untrusted server cert chain
\end{verbatim}

\begin{itemize}
\item[Step 1] At a command prompt, go to the main client directory where the \texttt{entrust_ssl_ca.cer} file is located.
\item[Step 2] Type the following text without line breaks:
\begin{verbatim}
keytool -import -alias entrust_ssl_ca
-keystore \texttt{<JAVA_HOME>/jre/lib/security/cacerts}
-file \texttt{entrust_ssl_ca.cer}
\end{verbatim}
where \texttt{<JAVA_HOME>} is the path to your Java installation.
\begin{itemize}
\item Note that \texttt{keytool} is a utility included in the Java SDK.
\item[Step 3] When prompted, enter the keystore password.
The default password is usually \textit{changeit}. You have successfully imported the certificate.
\end{itemize}
\end{itemize}
Using Perl in a Hosted Environment

If you are operating in a hosted environment (with an Internet Service Provider hosting your web store), then read this section.

To use the CyberSource Simple Order API client for Perl, you must install a Perl module from CyberSource. The CyberSource module ensures that your transactions are secure while being sent to CyberSource. If you use a hosted environment, you must check with your hosting provider (ISP) to make sure that they support the installation of the module.

If you are unable to find any documentation related to your hosting provider’s support of new Perl modules, then contact them with the following statement:

CyberSource requires the installation of a CyberSource Perl module required for use by my e-commerce software. CyberSource ensures the safety and functionality of the module. Please let me know your policy for supporting this implementation.

Note that it is also possible that other merchants who use your hosting provider may also use CyberSource, and so the hosting provider may have already installed the CyberSource Perl client. In that case, we suggest you verify with your hosting provider which version of the client they have installed and registered. If the client you want to use is newer, ask them to replace the module with the new one.
Choosing Your API and Client

API Variation

With this client package, you can use either of these two variations of the Simple Order API:

- Name-value pairs, which are simpler to use than XML
- XML, which requires you to create and parse XML documents

The test that you run immediately after installing the client uses name-value pairs.

Client Versions

CyberSource regularly updates the Simple Order API to introduce new API fields and functionality. To identify the latest version of the server-side API for the CyberSource services, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor.

The Simple Order API Client for Perl also has a version, but it is not the same as the API version. The client version represents the version of the client-side code that you use to access the CyberSource services.

When configuring the client, you indicate which version of the API you want to use. When setting this parameter, do not use the current version of the client; use the current version of the API.
Sample Code

The client contains sample scripts and sample Perl pages that you can use to test the client.

Basic Perl Page Example

The example below shows the primary code required to send a Simple Order API request for credit card authorization and process the reply. The example uses name-value pairs. For a more complete example, see the sample scripts and sample store in the next sections. "Using Name-Value Pairs," page 321 shows you how to create the code.

```perl
use CyberSource::SOAPI;

# Load the configuration settings
%config = cybs_load_config( 'cybs.ini' );

# set up the request by creating a hash and adding fields to it my %request;

# We want to do credit card authorization in this example $request{'ccAuthService_run'} = 'true';
# Add required fields
$request{'merchantID'} = 'infodev';
$request{'merchantReferenceCode'} = 'MRC-14344';
$request{'billTo_firstName'} = 'Jane';
$request{'billTo_lastName'} = 'Smith';
$request{'billTo_street1'} = '1295 Charleston Road';
$request{'billTo_city'} = 'Mountain View';
$request{'billTo_state'} = 'CA';
$request{'billTo_postalCode'} = '94043';
$request{'billTo_country'} = 'US';
$request{'billTo_email'} = 'jsmith@example.com';
$request{'card_accountNumber'} = '4111111111111111';
$request{'card_expirationMonth'} = '12';
$request{'card_expirationYear'} = '2010';
$request{'purchaseTotals_currency'} = 'USD';
# This example has two items
$request{'item_0_unitPrice'} = '12.34';
$request{'item_1_unitPrice'} = '56.78';
# Add optional fields here according to your business needs

# Send request
my ($reply, $status);
$status = cybs_run_transaction(%config, %request, %reply);

# Handle the reply. See "Handling the Return Status," page 324.
```
Sample Scripts

The client contains two sample scripts, one for using name-value pairs and one for using XML. See "Testing the Client," page 311 or see the README file for more information about using the authCaptureSample.pl script to test the client:

- **Name-value pairs:** See authCaptureSample.pl in `<installation directory>/samples/nvp`.

- **XML:** We suggest that you examine the name-value pair sample code listed above before implementing your code to process XML requests. For the XML sample code, see authSample.pl in `<installation directory>/samples/xml`. Also see the auth.xml XML document that the script uses.

Sample Store

The client download package also includes a sample store in the `<installation directory>/samples/store` directory.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>checkout.pl</td>
<td>Displays the contents of the shopping basket and prompts for address and payment information.</td>
</tr>
<tr>
<td>checkout2.pl</td>
<td>Authorizes the order and displays the result.</td>
</tr>
<tr>
<td>store_footer.pl</td>
<td>Footer used in the checkout pages.</td>
</tr>
<tr>
<td>store_header.pl</td>
<td>Header used in the checkout pages.</td>
</tr>
<tr>
<td>storesample_util.pl</td>
<td>File used by the other Perl files in the directory.</td>
</tr>
</tbody>
</table>

For Windows, the package also includes checkout.plx and checkout2.plx, which are similar to the .pl files. If you are using Perl CGI, use the .pl files. If you are using Perl ISAPI, use the .plx files.
To use the sample store:

Step 1 In the next step you will be copying the files listed in Table 37, "Perl Files in sampleStore Directory," on page 303 into the web server directory that contains your store's files. If you have files in that directory with the same names as the files in Table 37, page 303, make sure to back up your files first.

Step 2 Copy all of the files in the `<installation directory>/samples/store` directory into the web server directory you use to run your store.

Step 3 Modify the `cybs.ini` file in the `<installation directory>/samples/store` directory as appropriate. For more information, see "Configuring Client Settings," page 309.

Step 4 Open a web browser and type the following URL:

http://<your web server name or IP address>/<virtual directory if applicable>/<checkout.pl or checkout.plx>
Installing and Testing the Client

Minimum System Requirements

- For Linux:
 - Linux kernel 2.2, LibC6 on an Intel processor
 - Minimum Perl version 5.006
 - GNU GCC 3.1 or 3.1.1 compiler (with C++ enabled)

- For Windows:
 - Windows XP, 2000, or later
 - Either ActivePerl version 5.6 or 5.8
 - The SDK supports UTF-8 encoding.

Important

Failure to configure your client API host to a unique, public IP address will cause inconsistent transaction results.

The client API request ID algorithm uses a combination of IP address and system time, along with other values. In some architectures this combination might not yield unique identifiers.
Chapter 8 Perl Client

Transaction Security Keys

The first thing you must do is create your security key. The client uses the security key to add a digital signature to every request that you send. This signature helps ensure that no one else can use your CyberSource account to process orders. You specify the location of your key when you configure the client.

Important
You must generate two transaction security keys—one for the CyberSource production environment and one for the test environment. For information about generating and using security keys, see Creating and Using Security Keys (PDF | HTML).

The Simple Order API client for Perl package includes the ca-bundle.crt, a bundle of certificate files. The client expects to find the ca-bundle.crt file in the same directory as your security keys. If you move it elsewhere, use the sslCertFile configuration parameter to specify the file location. For more information, see the description of the parameter "sslCertFile," page 310.

Warning
You must protect your security key to ensure that your CyberSource account is not compromised.

Installing the Client

To install the client on Linux:

Step 1 Go to the client downloads page on the Support Center.

Step 2 Download the latest client package, and save the file in any directory.

Step 3 Unzip and untar the package.
This creates an installation directory called simapi-perl-n.n.n, where n.n.n is the client version.

Step 4 Make sure you are logged in as root (if you do not have root access, you should be working with your IT group or your Internet Service Provider to install the client).

Step 5 Generate the makefile by typing the following at a command prompt:

```
perl Makefile.PL
```
You may specify where you want the files to be copied by using the LIB parameter, for example:

```
perl Makefile.PL LIB=/home/user/perllib
```
Step 6 Enter these commands:

make
make test
make install

When building the Perl extension SOAPI.so, MakeMaker uses the lib subdirectory of the client as the LD_RUN_PATH, which makes SOAPI.so dependent on the full lib path. Therefore, you must choose one of these options:

- Keep the client’s lib subdirectory and its files in their current location.
- Include your Perl’s architecture-specific directory (for example: `<perl root dir>/lib/site_perl/5.8.8/i686-linux-thread-multi`) in your LD_LIBRARY_PATH. The make install step copies the shared libraries to that location.

The client is installed on your system.

Step 7 Configure the client. See "Configuring Client Settings," page 309 below.

Step 8 Test the client. See "Testing the Client," page 311.

If you are upgrading from a pre-5.0.0 version of the CyberSource client, you must update your code to use the package CyberSource::SOAPI instead of cybs. Also, you can now omit the package prefix (cybs::) when using the constants defined by the client.

The client is installed and tested. You are ready to create your own code for requesting CyberSource services. Finish reading this section, and then move on to either "Using Name-Value Pairs," page 321 if you plan to use name-value pairs, or "Using XML," page 331 if you plan to use XML.
To install the client on Windows:

Step 1 Go to the client downloads page on the Support Center.

Step 2 Download the latest client package. You can save the file in any directory.

Step 3 Unzip the package into a directory of your choice. This creates an installation directory called `simapi-perl-n.n.n`, where `n.n.n` is the client version.

Step 4 Change to the `simapi-perl-n.n.n` directory.

Step 5 If you have a previous version of the CyberSource Simple Order API client, uninstall it with PPM3:

```
ppm3 uninstall CyberSource-SOAPI
```

Step 6 Install the ppd file with PPM3 by typing this command at a prompt:

```
ppm3 install CyberSource-SOAPI.ppd
```

The client is now installed on your system.

Step 7 Configure the client. See "Configuring Client Settings," page 309 below.

Step 8 Test the client. See "Testing the Client," page 311.

The client is installed and tested. You are ready to create the code for requesting CyberSource services. Depending on your implementation, continue either with "Using Name-Value Pairs," page 321 or "Using XML," page 331.
Configuring Client Settings

To run the sample scripts included in the client package, you must set the configuration parameters in the `cybs.ini` file, which is located in the installation directory. You can also use this file when running transactions in a production environment (see the function descriptions in "Perl API for the Client," page 314). The following table describes the parameters that you can set. Note that the default `cybs.ini` file that comes with the client package does not include all of the parameters listed in the table. It includes only the ones required to run the sample scripts.

If you have multiple merchant IDs, or if you are a reseller handling multiple merchants, you can use different configuration settings depending on the merchant ID. See "Configuring for Multiple Merchant IDs," page 344 for more information.

Table 38 Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>merchantID</td>
<td>Merchant ID. This client uses this value if you do not specify a merchant ID in the request itself.</td>
</tr>
<tr>
<td>keysDirectory</td>
<td>Location of the merchant’s security key. The client includes a keys directory that you can use. Note We recommend that you store your key locally for faster request processing.</td>
</tr>
</tbody>
</table>
| sendToProduction | Flag that indicates whether the transactions for this merchant should be sent to the production server. Use one of these values:
 - `false`: Do not send to the production server; send to the test server (default setting).
 - `true`: Send to the production server. |
| targetAPIVersion | Version of the Simple Order API to use. For example, `1.18`. Do not set this property to the current version of the client; set it to an available API version. See "Client Versions," page 301 for more information. **Note** Go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor to see a current list of the available versions. See the Simple Order API Release Notes, for information about what has changed in each version. |
| keyFilename | Name of the security key filename for the merchant in the format `<security_key_filename>.p12`. |
| serverURL | Alternative server URL to use. See "Using Alternate Server Configuration Settings," page 343 for more information. Give the complete URL because it will be used exactly as you specify here. |
| namespaceURI | Alternative namespace URI to use. See "Using Alternate Server Configuration Settings," page 343 for more information. Give the complete namespace URI because it will be used exactly as you specify here. |
enableLog Flag directing the client to log transactions and errors. Use one of these values:

- false: Do not enable logging (default setting).
- true: Enable logging.

Important Logging can cause very large log files to accumulate. Therefore, CyberSource recommends that you use logging only when troubleshooting problems. To comply with all Payment Card Industry (PCI) and Payment Application (PA) Data Security Standards regarding the storage of credit card and card verification number data, the logs that are generated contain only masked credit card and card verification number data (CVV, CVC2, CVV2, CID, CVN).

Follow these guidelines:

- Use debugging temporarily for diagnostic purposes only.
- If possible, use debugging only with test credit card numbers.
- Never store clear text card verification numbers.
- Delete the log files as soon as you no longer need them.
- Never send email to CyberSource containing personal and account information, such as customers' names, addresses, card or check account numbers, and card verification numbers.

For more information about PCI and PABP requirements, see www.visa.com/cisp.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logDirectory</td>
<td>Directory to which to write the log file. Note that the client will not create this directory for you; you must specify an existing directory. The client includes a logs directory that you can use.</td>
</tr>
<tr>
<td>logFilename</td>
<td>Log file name. The client uses cybs.log by default.</td>
</tr>
<tr>
<td>logMaximumSize</td>
<td>Maximum size in megabytes for the log file. The default value is "10". When the log file reaches the specified size, it is archived into cybs.log. <yyyymmdd>T<hhmmss.xxx> and a new log file is started. The xxx indicates milliseconds.</td>
</tr>
<tr>
<td>sslCertFile</td>
<td>The location of the bundled file of CA Root Certificates (ca-bundle.crt) which is included in the client download package. The client automatically looks for the file in the directory where your security key is stored (specified by keysDirectory). If you move the file so it does not reside in keysDirectory, use this configuration setting to specify the full path to the file, including the filename.</td>
</tr>
<tr>
<td>timeout</td>
<td>Length of timeout in seconds. The default is 110.</td>
</tr>
</tbody>
</table>
Testing the Client

After the client is installed and configured, immediately test it to ensure the installation is successful.

To test the client:

Step 1
Go to the `<installation directory>/samples/nvp` directory.

Step 2
Run the test `authCaptureSample.pl` script by typing:

```
perl authCaptureSample.pl
```

Test results are displayed in the window.

- If the test is successful, a decision of ACCEPT appears for both the credit card authorization and the follow-on capture.
- If the test is not successful, a different decision value or an error message appears.
To troubleshoot a client test failure:

Step 1 Verify that your cybs.ini settings are correct.

Step 2 Run the test again.

Step 3 If the test still fails, look at the error message and find the return status value (a numeric value from -1 to 8).

Step 4 See the descriptions of the status values in "Possible Return Status Values," page 316, and follow any instructions given there for the error you received.

Step 5 Run the test again.

Step 6 If the test still fails, contact Customer Support.

To run the XML sample:

Step 1 Go to the `<installation directory>/samples/xml` directory.

Step 2 Run the test authSample.pl script by typing:

```
perl authSample.pl
```

The results of the test are displayed in the window.

- If the test is successful, a decision of ACCEPT appears for both the credit card authorization and the follow-on capture.
- If the test is not successful, a different decision value or an error message appears. See "To troubleshoot a client test failure;," page 312 for information about troubleshooting the error.
Chapter 8 Perl Client

Going Live
When you complete all of your system testing and are ready to accept real transactions from your customers, your deployment is ready to go live.

Note
After your deployment goes live, use real card numbers and other data to test every card type you support. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Process an authorization, then capture the authorization, and later refund the money. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.

CyberSource Essentials Merchants
If you use CyberSource Essentials services, you can use the Business Center site to go live. For a description of the process of going live, see the “Steps for Getting Started” section in Getting Started with CyberSource Essentials.

Important
Configure your client so that it can send transactions to the production server and not the test server. See the description of the sendToProduction property in Table 38, "Configuration Settings," on page 309.

CyberSource Advanced Merchants
If you use CyberSource Advanced services, see the “Steps for Getting Started” chapter in Getting Started with CyberSource Advanced for information about going live.

When you go live, your CyberSource account is updated so that you can send transactions to the CyberSource production server. If you have not already done so, you must provide your banking information to CyberSource so that your processor can deposit funds to your merchant bank account.

After CyberSource has confirmed that your account is live, make sure that you update your system so that it can send requests to the production server (ics2wsa.ic3.com) using your security key for the production environment. The test server (ics2wstesta.ic3.com) cannot be used for real transactions. For more information about sending transactions to the production server, see the description of the property "sendToProduction," page 309.
Updating the Client to Use a Later API Version

CyberSource periodically updates the Simple Order API (previously called the Web Services API). You can update your existing client to work with the new API version. Go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor for a list of the available API versions.

To update the client to use a later API version, update the value for the targetAPIVersion configuration parameter. For example, to use the 1.18 version of the API, set the property to 1.18.

Perl API for the Client

Summary of Functions

The client includes these functions:

- cybs_load_config()
- cybs_run_transaction()

cybs_load_config()

Table 39 cybs_load_config()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>hash cybs_load_config(string filename)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Loads the configuration settings from a file.</td>
</tr>
<tr>
<td>Returns</td>
<td>A hash containing the configuration settings.</td>
</tr>
<tr>
<td>Parameters</td>
<td>filename: Name of the configuration file.</td>
</tr>
</tbody>
</table>

Important

If you use a constant name as a key to a hash and do not fully qualify the constant name, you must prefix the constant name with a plus sign (+), for example: $request({+CYBS_SK_XML_DOCUMENT}).
cybs_run_transaction()

Table 40 cybs_run_transaction()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>int cybs_run_transaction(hash-pointer pconfig, hash-pointer prequest, hash-pointer preply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sends the request to the CyberSource server and receives the reply.</td>
</tr>
<tr>
<td>Returns</td>
<td>A value that indicates the status of the request.</td>
</tr>
<tr>
<td>Parameters</td>
<td>config: Configuration hash to use.</td>
</tr>
</tbody>
</table>

request:
 Hash containing one of these:
 - The individual name-value pairs in the request (for name-value pair users)
 - A single key called CYBS_SK_XML_DOCUMENT whose value is the XML document representing the request (for XML users)

To use fully qualified constant names, see the note on page 17.

reply:
 Hash containing one of these:
 - The individual name-value pairs in the reply (for name-value pair users)
 - A single key called CYBS_SK_XML_DOCUMENT whose value is the XML document representing the reply (for XML users)
 - A combination of the following keys and their values:
 - CYBS_SK_ERROR_INFO
 - CYBS_SK_RAW_REPLY
 - CYBS_SK_FAULT_DOCUMENT
 - CYBS_SK_FAULT_CODE
 - CYBS_SK_FAULT_STRING
 - CYBS_SK_FAULT_REQUEST_ID

Note: You must create this hash before you call cybs_run_transaction().
To use fully qualified constant names, see the note on page 17.

See below for descriptions of these keys.
Reply Key Descriptions

If you use a constant name as a key to a hash and do not fully qualify the constant name, you must prefix the constant name with a plus sign (+), for example: $request{+CYBS_SK_XML_DOCUMENT}.

- CYBS_SK_ERROR_INFO: Information about the error that occurred
- CYBS_SK_RAW_REPLY: The server’s raw reply
- CYBS_SK_FAULT_DOCUMENT: The entire, unparsed fault document
- CYBS_SK_FAULT_CODE: The fault code, which indicates where the fault originated
- CYBS_SK_FAULT_STRING: The fault string, which describes the fault.
- CYBS_SK_FAULT_REQUEST_ID: The request ID for the request.

Possible Return Status Values

The cybs_run_transaction() function returns a status indicating the result of the request. Table 41, page 316 describes the possible status values, including whether the error is critical. If an error occurs after the request has been sent to the server, but the client cannot determine whether the transaction was successful, then the error is considered critical. If a critical error happens, the transaction may be complete in the CyberSource system but not complete in your order system. The descriptions below indicate how to handle critical errors.

Note
- The sample scripts display a numeric value for the return status, which is listed in the first column.
- If you use a constant name as a key to a hash and do not fully qualify the constant name, you must prefix the constant name with a plus sign (+), for example: $request{+CYBS_SK_XML_DOCUMENT}.

The numeric value in the first column applies to sample scripts.

Table 41 Possible Status Values

<table>
<thead>
<tr>
<th>Numeric Value</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CYBS_S_OK</td>
<td>Critical: No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result: The client successfully received a reply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For name-value pair users, the $reply hash has the reply name-value pairs for the services that you requested.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For XML users, the $reply hash contains the response in XML format.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manual action to take: None</td>
</tr>
</tbody>
</table>
Table 41 Possible Status Values (Continued)

<table>
<thead>
<tr>
<th>Numeric Value</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| -1 | CYBS_S_PERL_PARAM_ERROR | Critical: No
Result: The request was not sent because a problem occurred with one or more of the parameters passed to the cybs_run_transaction() function.
Manual action to take: Make sure the parameter values are correct. |
| 1 | CYBS_S_PRE_SEND_ERROR | Critical: No
Result: An error occurred before the request could be sent. This usually indicates a configuration problem with the client.
Error information to read:
$reply{+CYBS_SK_ERROR_INFO}
Manual action to take: Fix the problem described in the error information. |
| 2 | CYBS_S_SEND_ERROR | Critical: No
Result: An error occurred while sending the request.
Error information to read:
$reply{+CYBS_SK_ERROR_INFO}
Manual action to take: None
Note A typical send error that you might receive when testing occurs if the ca-bundle.crt file is not located in the same directory as your security key. To correct the problem, see the description of the sslCertFile configuration parameter in Table 38, "Configuration Settings," on page 309. |
| 3 | CYBS_S_RECEIVE_ERROR | Critical: Yes
Result: An error occurred while waiting for or retrieving the reply.
Error information to read:
$reply{+CYBS_SK_ERROR_INFO}
$reply{+CYBS_SK_RAW_REPLY}
Manual action to take: Check the Transaction Search screens on the Business Center to verify that the request was processed, and if so, whether it succeeded. Update your transaction database appropriately. |
Table 41 Possible Status Values (Continued)

<table>
<thead>
<tr>
<th>Numeric Value</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 4 | CYBS_S_POST_RECEIVE_ERROR | **Critical**: Yes
Result: The client received a reply or a fault, but an error occurred while processing it.
Error information to read:
$reply{+CYBS_SK_ERROR_INFO}$
$reply{+CYBS_SK_RAW_REPLY}$
Manual action to take: Examine the value of $reply{CYBS_SK_RAW_REPLY}$. If you cannot determine the status of the request, check the Transaction Search screens on the Business Center to verify that the request was processed, and if so, whether it succeeded. Update your transaction database appropriately. |
| 5 | CYBS_S_CRITICAL_SERVER_FAULT| **Critical**: Yes
Result: The server returned a fault with $reply{+CYBS_SK_FAULT_CODE}$ set to CriticalServerError.
Error information to read:
$reply{+CYBS_SK_ERROR_INFO}$
$reply{+CYBS_SK_FAULT_CODE}$
$reply{+CYBS_SK_FAULT_STRING}$
$reply{+CYBS_SK_FAULTDOCUMENT}$
$reply{+CYBS_SK_FAULT_REQUEST_ID}$
Manual action to take: Check the Transaction Search screens on the Business Center to verify that the request succeeded. When searching for the request, use the request ID provided by $reply{CYBS_SK_FAULT_REQUEST_ID}$. |
| 6 | CYBS_S_SERVER_FAULT | **Critical**: No
Result: The server returned a fault with $reply{+CYBS_SK_FAULT_CODE}$ set to ServerError, indicating a problem with the CyberSource server.
Error information to read:
$reply{+CYBS_SK_ERROR_INFO}$
$reply{+CYBS_SK_FAULT_CODE}$
$reply{+CYBS_SK_FAULT_STRING}$
$reply{+CYBS_SK_FAULTDOCUMENT}$
Manual action to take: None |
Chapter 8 Perl Client

Table 41 Possible Status Values (Continued)

<table>
<thead>
<tr>
<th>Numeric Value</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 7 | CYBS_S_OTHER_FAULT | Critical: No
Result: The server returned a fault with $reply{+CYBS_SK_FAULT_CODE} set to a value other than ServerError or CriticalServerError. Indicates a possible problem with merchant status or the security key or that the message was tampered with after it was signed and before it reached the CyberSource server.

Error information to read:

$reply{+CYBS_SK_ERROR_INFO}
$reply{+CYBS_SK_FAULT_CODE}
$reply{+CYBS_SK_FAULT_STRING}
$reply{+CYBS_SK_FAULT_DOCUMENT}

Manual action to take: Examine the value of the $reply{CYBS_SK_FAULT_STRING} and fix the problem. You might need to generate a new security key or to contact Customer Support if problems exist with your merchant status.

Note A typical error occurs if your merchant ID is configured for test mode, but you send transactions to the production server. To correct the problem, see the sendToProduction configuration parameter in Table 38, "Configuration Settings," on page 309.

<table>
<thead>
<tr>
<th>Numeric Value</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 8 | CYBS_S_HTTP_ERROR | Critical: No
Result: The server returned an HTTP status code other than 200 (OK) or 504 (gateway timeout). Note that if a 504 gateway timeout occurs, the status=3.

Error information to read:

$reply{+CYBS_SK_ERROR_INFO}
$reply{+CYBS_SK_RAW_REPLY}

Value of varReply: CYBS_SK_RAW_REPLY contains the HTTP response body, or if none was returned, the literal "(no response available)".

Manual action to take: None.
Table 42 summarizes the reply information that you receive for each status value.

Table 42 Reply Information Available for Each Status Value

<table>
<thead>
<tr>
<th>Status Value</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYBS_SDK</td>
<td></td>
</tr>
<tr>
<td>CYBS_S_PERI_PARAM_ERROR</td>
<td></td>
</tr>
<tr>
<td>CYBS_S_PRE_SEND_ERROR</td>
<td></td>
</tr>
<tr>
<td>CYBS_S_RECEIVE_ERROR</td>
<td></td>
</tr>
<tr>
<td>CYBS_S_POST_SEND_ERROR</td>
<td></td>
</tr>
<tr>
<td>CYBS_S_CRITICAL_SERVER_FAULT</td>
<td></td>
</tr>
<tr>
<td>CYBS_S_SERVER_FAULT</td>
<td></td>
</tr>
<tr>
<td>CYBS_S_OTHER_FAULT</td>
<td></td>
</tr>
<tr>
<td>CYBS_S_HTTP_ERROR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name-value pairs or CYBS_SK_XML_DOCUMENT</th>
<th>Available Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYBS_SK_ERROR_INFO</td>
<td>x</td>
</tr>
<tr>
<td>CYBS_SK_RAW_REPLY</td>
<td>x x</td>
</tr>
<tr>
<td>CYBS_SK_FAULT_DOCUMENT</td>
<td>x x</td>
</tr>
<tr>
<td>CYBS_SK_FAULT_CODE</td>
<td>x x</td>
</tr>
<tr>
<td>CYBS_SK_FAULT_STRING</td>
<td>x x</td>
</tr>
<tr>
<td>CYBS_SK_FAULT_REQUEST_ID</td>
<td>x</td>
</tr>
</tbody>
</table>
Using Name-Value Pairs

This section explains how to use the client to request CyberSource services by using name-value pairs.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server
- Processes the reply information

The CyberSource servers do not support persistent HTTP connections.

The instructions in this guide explain how to use Perl to request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Creating and Sending Requests

The code in this section’s example is incomplete. For a complete sample program, see the authCaptureSample.pl file in the `<installation directory>/samples/nvp directory`, or see the sample web pages.

If you use a constant name as a key to a hash and do not fully qualify the constant name, you must prefix the constant name with a plus sign (+), for example: $request(+CYBS_SK_XML_DOCUMENT).

To use any CyberSource service, you must create and send a request that includes the required information for that service.

The example that is developed in the following sections shows basic code for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

Adding the Use Statement

First add the use statement for the CyberSource::SOAPI module:

```perl
use CyberSource::SOAPI;
```
Loading the Configuration Settings

Next load the configuration settings from a file:

```perl
%config = cybs_load_config('cybs.ini');
```

You could instead create a hash and add each configuration setting separately. You could also use a combination of the two methods: You could read the settings from a file and then add new settings dynamically with the hash to override the settings read from the file.

Creating an Empty Request Hash

You next create a hash to hold the request fields:

```perl
my %request;
```

Adding the Merchant ID

You next add the CyberSource merchant ID to the request. You can let the CyberSource Perl client automatically retrieve the merchant ID from the `%config` hash, or you can set it directly in the `%request` hash (see below). The `%request` hash value overrides the `%config` hash value.

```perl
$request{'merchantID'} = 'infodev';
```

Adding Services to the Request Hash

You next indicate the service you want to use by adding the field to the request. For example, to request a credit card authorization:

```perl
$request{'ccAuthService_run'} = 'true';
```

Requesting a Sale

You can request multiple services by adding additional fields to the request. For example, if you fulfill the order immediately, you can request credit card authorization and capture together (referred to as a "sale"):

```perl
$request{'ccAuthService_run'} = 'true';
$request{'ccCaptureService_run'} = 'true';
```
Adding Service-Specific Fields to the Request Hash

You next add the fields that are used by the services that you are requesting. If you request multiple services and they share common fields, you must add the field once only.

```perl
$request{'merchantReferenceCode'} = '3009AP229L7W';
$request{'billTo_firstName'} = 'Jane';
$request{'billTo_lastName'} = 'Smith';
$request{'card_accountNumber'} = '4111111111111111';
$request{'item_0_unitPrice'} = '29.95';
```

The example above shows only a partial list of the fields you must send. See "Related Documents," page 21 for information about other guides that list the API fields for the services you are requesting.

Sending the Request

You next create the hash that will hold the reply and send the request:

```perl
my (%reply, $status);
$status = cybs_run_transaction( \%config, \%request, \%reply );
```
Interpreting Replies

Handling the Return Status

The $status value is the handle returned by the cybs_run_transaction() method. (See the following example.) The $status indicates whether the CyberSource server received the request, the client received the reply, or there were any errors or faults during transmission. See "Possible Return Status Values," page 316 for descriptions of each status value. For a different example, see the authCaptureSample.pl file in the <installation directory>/sample directory.

```perl
if ($status == CYBS_S_OK) {
    # Read the value of the "decision" in the %reply hash.
    $decision = $reply->{'decision'};
    # If decision=ACCEPT, indicate to the customer that the request was successful.
    # If decision=REJECT, indicate to the customer that the order was not approved.
    # If decision=ERROR, indicate to the customer an error occurred and to try again
    # later.
    
    # Now get reason code results:
    # $strContent = getReplyContent(%reply);
    # See "Processing the Reason Codes," page 326 for how to process the reasonCode
    # from the reply.
    # Note that getReplyContent() is included in this document to help you understand
    # how to process reason codes, but it is not included as part of the sample scripts
    # or sample web pages.
    } else {
        handleError( $status, \%request, \%reply );
    }
}
```

```perl
#---------------------
sub handleError
#---------------------
{
    # handleError shows how to handle the different errors that can occur.
    # To use fully qualified constant names, see the note in "Creating and Sending
    # Requests," page 321.
    my ($nStatus, $pRequest, $pReply) = @_;

    # There was a problem with the parameters passed to cybs_run_transaction()
    if ( $nStatus == CYBS_S_PERL_PARAM_ERROR ) {
        # Non-critical error.
        # Tell customer the order cannot be completed and to try again later.
        # Notify appropriate internal resources of the error.
    }
}```
# An error occurred before the request could be sent.
elsif ( $nStatus == CYBS_S_PRE_SEND_ERROR ) {
    # Non-critical error.
    # Tell customer the order cannot be completed and to try again later.
    # Notify appropriate internal resources of the error.
}

# An error occurred while sending the request.
elsif ( $nStatus == CYBS_S_SEND_ERROR ) {
    # Non-critical error.
    # Tell customer the order cannot be completed and to try again later.
}

# An error occurred while waiting for or retrieving the reply.
elsif ( $nStatus == CYBS_S_RECEIVE_ERROR ) {
    # Critical error.
    # Tell customer the order cannot be completed and to try again later.
    # Notify appropriate internal resources of the error.
    # See the sample code for more information about handling critical errors.
}

# An error occurred after receiving and during processing of the reply.
elsif ( $nStatus == CYBS_S_POST_RECEIVE_ERROR ) {
    # Critical error.
    # Tell customer the order cannot be completed and to try again later.
    # Look at CYBS_SK_RAW_REPLY in $reply for the raw reply.
    # Notify appropriate internal resources of the error.
    # See the sample code for more information about handling critical errors.
}

# CriticalServerError fault
elsif ( $nStatus == CYBS_S_CRITICAL_SERVER_FAULT ) {
    # Critical error.
    # Tell customer the order cannot be completed and to try again later.
    # Read the various fault details from the $reply.
    # Notify appropriate internal resources of the fault.
    # See the sample code for more information about reading fault details and
    # handling a critical error.
}

# ServerError fault
elsif ( $nStatus == CYBS_S_SERVER_FAULT ) {
    # Non-critical error.
    # Tell customer the order cannot be completed and to try again later.
    # Read the various fault details from the $reply.
    # See the sample code for information about reading fault details.
}
After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. (See following example.) You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Important
Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

Processing the Reason Codes

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
  - ACCEPT if the request succeeded
  - REJECT if one or more of the services in the request was declined
  - REVIEW if you are CyberSource Advanced merchant using CyberSource Decision Manager and it flags the order for review. See "Handling Decision Manager Reviews," page 328 for more information.

```perl
Other fault
earf { $nStatus == CYBS_S_OTHER_FAULT } {
 # Non-critical error.
 # Tell customer the order cannot be completed and to try again later.
 # Read the various fault details from the $reply.
 # Notify appropriate internal resources of the fault.
 # See the sample code for information about reading fault details.
}

HTTP error
earf { $nStatus == CYBS_S_HTTP_ERROR } {
 # Non-critical error.
 # Tell customer the order cannot be completed and to try again later.
 # Look at CYBS_SK_RAW_REPLY in $reply for the raw reply.
 break;
}
```
ERROR if there was a system error. See "Retrying When System Errors Occur," page 330 for more information.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the *Credit Card Services User Guide* for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

---

Important

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.

---

```perl
Note that getReplyContent is included in this document to help you understand how to process reason codes, but it is not included as part of the sample scripts or sample web pages.
#----------------
sub getReplyContent($pReply)
#----------------
{
 my ($pReply) = @_;
 $reasonCode = $$pReply{'reasonCode'};
 # Success
 if ($reasonCode == '100'){
 return(sprintf("Request ID: %s
AuthorizedAmount: %s
Authorization Code: %s,\n\n$pReply{'requestID'}, $pReply{'ccAuthReply_amount'}, $pReply{'ccAuthReply_authorizationCode'}));
 }
 # Insufficient funds
 elsif ($reasonCode == '204'){
 return(sprintf("Insufficient funds in account. Please use a different card or select another form of payment.\n\n$pReply{'ccAuthReply_authorizationCode'}));
 }
 # add other reason codes here that you must handle specifically
 else {
 # For all other reason codes, return NULL, in which case, you should display a generic message appropriate to the decision value you received.
 return(NULL);
 }
}
```
Handling Decision Manager Reviews

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

This following additional example applies to CyberSource Advanced merchants only.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the `businessRules_ignoreAVSResult` field to “true” in your combined authorization and capture request:

```
$request{'businessRules_ignoreAVSResult'} = 'true';
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

---

Note
You are charged only for the services that CyberSource performs.
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.
Using XML

This section describes how to request CyberSource services by using XML.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server

You are charged only for the services that CyberSource performs.

- Processes the reply information

The instructions in this section explain how to use Perl to request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Sample Code

We suggest that you examine the name-value pair sample code provided in authCaptureSample.pl before implementing your code to process XML requests. The sample will give you a basic understanding of how to request CyberSource services. The sample code file is located in the <installation directory>/samples/nvp directory.

After examining that sample code, read this section to understand how to create code to process XML requests. Note that the code in this section’s example is incomplete. For a complete sample program, see the authSample.pl file in the <installation directory>/samples/xml directory.
Creating a Request Document

If you use a constant name as a key to a hash and do not fully qualify the constant name, you must prefix the constant name with a plus sign (+), for example: $request{+CYBS_SK_XML_DOCUMENT}.

The client allows you to create an XML request document using any application, then send the request to CyberSource. For example, if you have a customer relationship management (CRM) system that uses XML to communicate with other systems, you can use the CRM system to generate request documents.

The request document must validate against the XML schema for CyberSource transactions. To view the schema, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor and look at the xsd file for the version of the Simple Order API you are using.

Make sure that the elements in your document appear in the correct order. If they do not, your document will not validate, and your request will fail.

The following example shows a basic XML document for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

The XML document in this example is incomplete. For a complete example, see the auth.xml document in the samples/xml directory.

Creating an Empty Request

Add the XML declaration and the document's root element:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18"/>
</requestMessage>
```

When you construct a request, you must indicate the correct namespace for the elements, and the namespace must use the same API version that you specify in the configuration settings file. For example, if targetAPIVersion=1.18 in the cybs.ini file, the namespace must be urn:schemas-cybersource-com:transaction-data-1.18.

The XML document that you receive in the reply always uses a prefix of c: (for example, xmlns:c="urn:schemas-cybersource-com:transaction-data-1.18"). Make sure you use an XML parser that supports namespaces.
Adding the Merchant ID
You next add the CyberSource merchant ID to the request.

Note
If you specify a merchant ID in the XML document, it overrides the merchant ID you specify in the configuration settings file.

```
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
 <merchantID>infodev</merchantID>
</requestMessage>
```

Adding Services to the Request
You next indicate the service that you want to use by creating an element for that service in the request, then setting the element's run attribute to true. For example, to request a credit card authorization:

```
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
 <merchantID>infodev</merchantID>
 <ccAuthService run="true"/>
</requestMessage>
```

Requesting a Sale
You can request multiple services by adding additional elements. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (referred to as a "sale"):

```
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
 <merchantID>infodev</merchantID>
 <ccAuthService run="true"/>
 <ccCaptureService run="true"/>
</requestMessage>
```
Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. Most fields are child elements of container elements; for example, a `<card>` element contains the customer's credit card information.

```xml
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
 <merchantID>infodev</merchantID>
 <billTo>
 <firstName>Jane</firstName>
 <lastName>Smith</lastName>
 </billTo>
 <item id="0">
 <unitPrice>29.95</unitPrice>
 </item>
 <card>
 <accountNumber>4111111111111111</accountNumber>
 </card>
 <ccAuthService run="true"/>
</requestMessage>
```

The example above shows only a partial list of the fields you must send. Refer to "Related Documents," page 21 for information about the guides that list all of the fields for the services that you are requesting.

Sending Requests

Once you have created an XML document, you use Perl to send the request to CyberSource.

Adding the Use Statement

First add the use statement for the `cybs` module (for Linux) or the `CyberSource::SOAPI` module: (for Windows)

```perl
use CyberSource::SOAPI;
```
## Loading the Configuration Settings

First load the configuration settings from a file:

```perl
$config = cybs_load_config('cybs.ini');
```

### Note

The namespace that you specify in the XML document must use the same API version that you specify in the configuration settings file. For example, if `targetAPIVersion=1.18` in the file, the namespace must be `urn:schemas-cybersource-com:transaction-data-1.18`. The example code below retrieves the API version from the configuration settings file and places it in the XML document.

## Reading the XML Document

```perl
Read the XML document.
open IN, "auth.xml";
$req_array = <IN>;
close IN;
$inputXML = join("", $req_array);

Retrieve the target API version from the $config hash and replace the # value in the XML document.
$inputXML =~~ s/_APIVERSION_/$config{+CYBS_C_TARGET_API_VERSION}/;
```

## Sending the Request

You next create the request hash, add the XML document to the hash, and send the request:

```perl
my $request;
To use fully qualified constant names, see the important note in "Creating a Request Document," page 332.
$request{+CYBS_SK_XML_DOCUMENT} = $inputXML;
send request
my($reply, $status);
$status = cybs_run_transaction($config, $request, $reply);
```
Chapter 8

Perl Client

Interpreting Replies
Handling the Return Status
The $status value is the handle returned by the cybs_run_transaction() method. The
$status indicates whether the CyberSource server received the request, the client
received the reply, or there were any errors or faults during transmission. See "Possible
Return Status Values," page 316 for descriptions of each status value. For a different
example, see the authSample.pl file in the client’s <installation directory>/
samples/xml directory.
# To use fully qualified constant names, see the important note in "Creating a Request
if ($status == CYBS_S_OK) {
# Read the value of the "decision" in the %reply hash.
# This code assumes you have a method called getField() that retrieves the
# specified field from the XML document in $reply{+CYBS_SK_XML_DOCUMENT}
$decision = getField( \%reply, 'decision' );
# If decision=ACCEPT, indicate to the customer that the request was successful.
# If decision=REJECT, indicate to the customer that the order was not approved.
# If decision=ERROR, indicate to the customer that an error occurred and to try
# again later.
# Now get reason code results:
# $strContent = getReplyContent(\%reply);
# See "Processing the Reason Codes," page 326 for how to process the reasonCode
# from the reply.
# Note that getReplyContent() is included in this document to help you understand
# how to process reason codes, but it is not included as part of the sample scripts
# or sample web pages.
}
else {
handleError( $status, \%request, \%reply );
}
#--------------------sub handleError
#--------------------{
# handleError shows how to handle the different errors that can occur.
my ($nStatus, $pRequest, $pReply) = @_;
# There was a problem with the parameters passed to cybs_run_transaction()
if ( $nStatus == CYBS_S_PERL_PARAM_ERROR ) {
# Non-critical error.
# Tell customer the order cannot be completed and to try again later.
# Notify appropriate internal resources of the error.
}

Simple Order API Client Developer Guide | September 2015

336


# An error occurred before the request could be sent.
elsif ( $nStatus == CYBS_S_PRE_SEND_ERROR ) {
    # Non-critical error.
    # Tell customer the order cannot be completed and to try again later.
    # Notify appropriate internal resources of the error.
}

# An error occurred while sending the request.
elsif ( $nStatus == CYBS_S_SEND_ERROR ) {
    # Non-critical error.
    # Tell customer the order cannot be completed and to try again later.
}

# An error occurred while waiting for or retrieving the reply.
elsif ( $nStatus == CYBS_S_RECEIVE_ERROR ) {
    # Critical error.
    # Tell customer the order cannot be completed and to try again later.
    
    # Notify appropriate internal resources of the error.
    # See the sample code for more information about handling critical errors.
}

# An error occurred after receiving and during processing of the reply.
elsif ( $nStatus == CYBS_S_POST_RECEIVE_ERROR ) {
    # Critical error.
    # Tell customer the order cannot be completed and to try again later.
    # Look at CYBS_SK_RAW_REPLY in $reply for the raw reply.
    # Notify appropriate internal resources of the error.
    # See the sample code for more information about handling critical errors.
}

# CriticalServerError fault
elsif ( $nStatus == CYBS_S_CRITICAL_SERVER_FAULT ) {
    # Critical error.
    # Tell customer the order cannot be completed and to try again later.
    # Read the various fault details from the $reply.
    # Notify appropriate internal resources of the fault.
    # See the sample code for more information about reading fault details and
    # handling a critical error.
}

# ServerError fault
elsif ( $nStatus == CYBS_S_SERVER_FAULT ) {
    # Non-critical error.
    # Tell customer the order cannot be completed and to try again later.
    # Read the various fault details from the $reply.
    # See the sample code for information about reading fault details.
}
Processing the Reason Codes

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
  - ACCEPT if the request succeeded
  - REJECT if one or more of the services in the request was declined
  - REVIEW if you use CyberSource Decision Manager and it flags the order for review. See "Handling Decision Manager Reviews," page 340 for more information.
  - ERROR if there was a system error. See "Retrying When System Errors Occur," page 330 for more information.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The
reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

---

Important

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.

---

# Note that getReplyContent is included in this document to help you understand how to process reason codes, but it is not included as part of the sample scripts or sample web pages.

# This code assumes you have a method called getField() that retrieves the specified field from the XML document in $reply{+CYBS_SK_XML_DOCUMENT}.

#----------------
sub getReplyContent( $pReply )
#----------------
{
    my ($pReply) = @_;
    $reasonCode = $pReply{'reasonCode'};

    # Success
    if ($reasonCode == '100'){
        return( sprintf("Request ID: %s
AuthorizedAmount: %s
Authorization Code: %s,
$$pReply{'requestID'}, $$pReply{'ccAuthReply_amount'},
$$pReply{'ccAuthReply_authorizationCode'} ) );
    }

    # Insufficient funds
    elsif ($reasonCode == '204'){
        return( sprintf("Insufficient funds in account. Please use a different card or select another form of payment." ) );
    }
    # add other reason codes here that you must handle specifically
    else {  
        # For all other reason codes, return NULL, in which case, you should display a
        # generic message appropriate to the decision value you received.
        return( NULL );
    }
}
Handling Decision Manager Reviews

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

This following additional example applies to CyberSource Advanced merchants only.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the businessRules_ignoreAVSResult field to “true” in your combined authorization and capture request:

```
<businessRules>
 <ignoreAVSResult>true</ignoreAVSResult>
</businessRules>
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

---

You are charged only for the services that CyberSource performs.

---

Note
## Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.
Advanced Configuration Information

Using Alternate Server Configuration Settings
You use the serverURL and namespaceURI configuration settings if CyberSource changes the convention we use to specify the server URL and namespace URI, but we have not had the opportunity to update the client yet.

For example, these are the server URLs and namespace URI for accessing the CyberSource services using the Simple Order API version 1.18:

- Test server URL:
  https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

- Production server URL:
  https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

- Namespace URI:

If you view the above URLs with a web browser, a list of the supported API versions and the associated schema files are displayed.

Note

If in the future CyberSource changes these conventions, but does not provide a new version of the client, you can configure your existing client to use the new server and namespace conventions required by the CyberSource server.
Configuring for Multiple Merchant IDs

If you have multiple merchant IDs, or if you are a reseller handling multiple merchants, you can have different configuration settings for different merchant IDs. You set these in the configuration object that you pass to the cybs_run_transaction() function. When using the samples provided in the client package, you set the configuration parameters in cybs.ini file.

All of the properties except merchantID can be prefixed with "<merchantID>." to specify the settings for a specific merchant.

Example  Merchant-Specific Properties Settings

If you have a merchant with merchant ID of merchant123, and you want enable logging only for that merchant, you can set the enableLog parameter to true for all requests that have merchant123 as the merchant ID:

merchant123.enableLog=true
enableLog=false

The client disables logging for all other merchants.
CHAPTER 9

Using PHP in a Hosted Environment

If you are operating in a hosted environment (with an Internet Service Provider hosting your web store), read this section.

To use the CyberSource Simple Order API client for PHP, you must register a PHP extension in `php.ini` and modify the LD_LIBRARY_PATH (for Linux) or the system PATH (for Windows) to include the `lib` directory of the CyberSource client. The CyberSource binaries ensure that your transactions are secure while being sent to CyberSource. If you use a hosted environment, you must check with your hosting provider (ISP) to make sure that they support the addition of a PHP extension and editing of the path environment variables.

If you cannot find any documentation related to your hosting provider's support of extensions and new library locations, contact your hosting provider with this statement:

> CyberSource requires modifying `php.ini` to add their extension and editing of LD_LIBRARY_PATH (for Linux) or the system PATH (for Windows) to add the directory containing the dynamic libraries required by the extension for use by my e-commerce software. CyberSource ensures the safety and functionality of these libraries. Please let me know your policy for supporting this implementation.
Because other merchants who use your hosting provider may also use CyberSource, your hosting provider may have already installed the CyberSource PHP client. In that case, we suggest that you verify with your hosting provider the version of the client they have installed and registered. If the client you want to use is newer, ask them to replace the libraries with the new ones.

If you have any questions regarding the above information or installation of the client, please contact Customer Support. If you are a Business Center user, and you cannot obtain the appropriate access from your ISP to install the client, consider using CyberSource’s Hosted Order Page or Simple Order Post instead of the PHP client. These connection methods are described in the Hosted Order Page User’s Guide and the Silent Order Post User’s Guide, both of which are available in the Business Center.

## Choosing Your API and Client

### API Variation

With this client package, you can use either of these variations of the Simple Order API:
- Name-value pairs, which are simpler to use than XML
- XML, which requires you to create and parse XML documents

The test that you run immediately after installing the client uses name-value pairs.

### Client Versions

CyberSource regularly updates the Simple Order API to introduce new API fields and functionality. To identify the latest version of the server-side API for the CyberSource services, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor.

The Simple Order API Client for PHP also has a version, but it is not the same as the API version. The client version represents the version of the client-side code that you use to access the CyberSource services.

When configuring the client, you indicate the version of the API that you want to use. When setting this parameter, do not use the current version of the client; use the current version of the API.
Sample Code

The client contains sample scripts and sample PHP pages that you can use to test the client.

Basic PHP Page Example

The example below shows the primary code required to send a Simple Order API request for credit card authorization. The example uses name-value pairs. For a more complete example, see the sample program and sample PHP pages included in the package (see "Sample Code," page 347). "Using Name-Value Pairs," page 366 shows you how to create the code.

```php
// Load the configuration settings
$config = cybs_load_config('cybs.ini');

// set up the request by creating an array and adding fields to it
$request = array();

// We want to do credit card authorization in this example
$request['ccAuthService_run'] = "true";
// Add required fields
$request['merchantID'] = 'infodev';
$request['merchantReferenceCode'] = 'MRC-14344';
$request['billTo_firstName'] = 'Jane';
$request['billTo_lastName'] = 'Smith';
$request['billTo_street1'] = '1295 Charleston Road';
$request['billTo_city'] = 'Mountain View';
$request['billTo_state'] = 'CA';
$request['billTo_postalCode'] = '94043';
$request['billTo_country'] = 'US';
$request['billTo_email'] = 'jsmith@example.com';
$request['card_accountNumber'] = '4111111111111111';
$request['card_expirationMonth'] = '12';
$request['card_expirationYear'] = '2010';
$request['purchaseTotals_currency'] = 'USD';

// This example has two items
$request['item_0_unitPrice'] = '12.34';
$request['item_1_unitPrice'] = '56.78';

// Add optional fields here according to your business needs

// Send request
$reply = array();
$status = cybs_run_transaction($config, $request, $reply);
// Handle the reply. See "Handling the Return Status," page 369.
```
Sample Scripts

The client contains two sample scripts, one for using name-value pairs and one for using XML. See "Testing the Client," page 356 or see the README file for more information about using the authCaptureSample.php script to test the client.

- Name-value pairs: See authCaptureSample.php in <installation directory>/samples/nvp.
- XML: We suggest that you examine the name-value pair sample code listed above before implementing your code to process XML requests.

For the XML sample code, see authSample.php in <installation directory>/samples/xml. Also see the auth.xml XML document that the script uses.

Sample PHP Pages

The client download package also includes sample PHP pages in the <installation directory>/samples/store directory.

Table 43 Files in sampleStore Directory

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>util.php</td>
<td>Used by the other PHP pages in the directory.</td>
</tr>
<tr>
<td>checkout.php</td>
<td>Displays the contents of the shopping basket and prompts for address and payment information.</td>
</tr>
<tr>
<td>checkout2.php</td>
<td>Authorizes the order and displays the result.</td>
</tr>
<tr>
<td>store_footer.php</td>
<td>Footer used in the checkout pages.</td>
</tr>
<tr>
<td>store_header.php</td>
<td>Header used in the checkout pages.</td>
</tr>
</tbody>
</table>

To use the sample PHP pages:

**Step 1** If you have files in your web server's root directory that have the same name as the files listed in Table 43, "Files in sampleStore Directory," on page 348, back up those files. You will be copying the sample store files into the root directory in the next step. For Apache, the root directory is the one specified by DocumentRoot in httpd.conf.

**Step 2** Copy all of the files in the <installation directory>/samples/store directory into your web server's root directory.

**Step 3** Modify the cybs.ini file as appropriate. For more information, see "Configuring Client Settings," page 354.
Step 4 Open the checkout.php file in a text editor and locate the cybs_load_config() function.

Step 5 Make sure that the parameter for the cybs.ini file passed to the function includes the absolute path. For example, make sure the line reads:

```php
$config = cybs_load_config('c:\cybs.ini');
```

not this line:

```php
$config = cybs_load_config('cybs.ini');
```

Step 6 Restart your web server.

If you are using Microsoft Internet Information Services (IIS), you might need to restart your computer for IIS to pick up the new server path.

Step 7 Open a web browser and type the following URL:

```url
http://<your web server name or IP address>/<virtual directory if applicable>/checkout.php
```
Installing and Testing the Client

Minimum System Requirements

For Linux

- Linux kernel 2.2, LibC6 on an Intel processor (for RedHat users, this currently corresponds to versions 7.1 and 7.2)
- PHP4 (minimum version 4.2.1) or PHP5 (5.0.0–5.0.3 and 5.1.0-5.1.2)
- GNU GCC

For Windows

- Windows XP, 2000, or newer
- Minimum PHP version 4.2.1

The SDK supports UTF-8 encoding.

---

Important

Failure to configure your client API host to a unique, public IP address will cause inconsistent transaction results.

---

The client API request ID algorithm uses a combination of IP address and system time, along with other values. In some architectures this combination might not yield unique identifiers.
Chapter 9  PHP Client

Transaction Security Keys

The first thing you must do is create your security key. The client uses the security key to add a digital signature to every request that you send. This signature helps ensure that no one else can use your CyberSource account to process orders. You specify the location of your key when you configure the client.

---

**Important**

You must generate two transaction security keys—one for the CyberSource production environment and one for the test environment. For information about generating and using security keys, see Creating and Using Security Keys (PDF | HTML).

---

The Simple Order API client for PHP package includes the `ca-bundle.crt`, a bundle of certificate files. The client expects to find the `ca-bundle.crt` file in the same directory as your security keys. If you move it elsewhere, use the `sslCertFile` configuration parameter to specify the file location. For more information, see the description of the parameter "sslCertFile," page 355.

---

**Warning**

You must protect your security key to ensure that your CyberSource account is not compromised.

---

Installing the Client

This section describes the installation steps for Linux and Windows environments.

**To install the client on Linux:**

**Step 1**  Go to the client downloads page on the Support Center.

**Step 2**  Download the latest client package. You can save the file in any directory.

**Step 3**  Unzip and untar the package.

This creates a directory called `simapi-php-n.n.n`, where `n.n.n` is the client version.

---

**Important**

The `simapi-php-n.n.n/lib` directory contains symbolic links. If you install the client by copying the `lib` directory from some other location where you untarred the package, check to see if the symbolic links are still there. If they are not, you must recreate them.

---

**Step 4**  Copy the `phpN_cybersource.so` file into the PHP extension directory, where the `N` is 4 if your PHP version is 4.x.x; 5 if your PHP version is 5.0.0-5.0.2; 503 if your PHP version is 5.0.3.; or 512 if your version is 5.1.0-5.1.2.
The extension directory is the one "extension_dir" is set to in the php.ini file. If you do not already have "extension_dir" set to an explicit directory:

a  Create an extension directory (outside of the client installation directory).

b  Set "extension_dir" to that directory.

c  Copy the phpN_cybersource.so file to that directory location.

Step 5  If you are using an Oracle database, go to "Special Installation Instructions for Oracle Users," page 359 and follow the instructions.

Otherwise, in the php.ini file, locate the “Dynamic Extensions” section and add one of the following lines anywhere before the next section in the file:

- extension=php4_cybersource.so (if using PHP 4.x.x) or
- extension=php5_cybersource.so (if using PHP 5.0.0-5.0.2)
- extension=php503_cybersource.so (if using PHP 5.0.3) or
- extension=php512_cybersource.so (if using PHP 5.1.0-5.1.2)

Step 6  Save the php.ini file.

Step 7  Modify the environment variable LD_LIBRARY_PATH to include the lib directory of the CyberSource client. For example:

export LD_LIBRARY_PATH=/baseDir/simapi-php-n.n.n/lib:$LD_LIBRARY_PATH

where /baseDir is the directory where you untarred the CyberSource client package.

---

Note: If the web server is running as the user "nobody", you must use ldconfig instead of setting the LD_LIBRARY_PATH. In this case, update the /etc/ld.so.conf file to include the library path (/baseDir/simapi-php-n.n.n/lib), and run ldconfig to update the configuration.

---

Step 8  Configure the client. See "Configuring Client Settings," page 354 below.

Step 9  Test the client. See "Testing the Client," page 356.
To install the client on Windows:

**Step 1** Go to the client downloads page on the Support Center.

**Step 2** Download the latest client package. You can save the file in any directory.

**Step 3** Unzip the package.
   
   This creates a directory called `simapi-php-n.n.n`, where `n.n.n` is the client version.

**Step 4** Copy the `phpN_cybersource.dll` file into the PHP extension directory, where the `N` is 4 if your PHP version is 4.x.x, or 5 if your PHP version is 5.x.x.
   
   The extension directory is the one "extension_dir" is set to in the `php.ini` file. If you do not already have "extension_dir" set to an explicit directory:
   
   a. Create an extension directory (outside of the client installation directory).
   
   b. Set "extension_dir" to that directory.
   
   c. Copy the `phpN_cybersource.dll` file to that directory location.

**Step 5** In the `php.ini` file, locate the “Windows Extensions” section and add one of the following lines anywhere before the next section in the file:

   - `extension=php4_cybersource.dll` (if using PHP 4.x.x) or
   - `extension=php5_cybersource.dll` (if using PHP 5.0.0–5.0.2)
   - `extension=php503_cybersource.dll` (if using PHP 5.0.3) or
   - `extension=php512_cybersource.dll` (if using PHP 5.1.0-5.1.2)

**Step 6** Save the `php.ini` file.

**Step 7** Add the `lib` directory of the CyberSource client package to the system PATH. This makes the DLLs included in the client package available to the CyberSource PHP extension.

   The client is installed on your system.

**Step 8** Configure the client. See "Configuring Client Settings," page 354 below.

**Step 9** Test the client. See “Testing the Client,” page 356.
Configuring Client Settings

To run the sample scripts included in the client package, you must set the configuration parameters in the `cybs.ini` file, which is located in the `<installation directory>/samples` directory for Linux, and in the `nvp.xml`, and `store` subfolders inside the `samples` directory for Windows. You can also use this file when running transactions in a production environment (see the function descriptions in "PHP API for the Client," page 360). The following table describes the parameters that you can set. The default `cybs.ini` file that comes with the client package does not include all of the parameters listed in the table. The file includes only the parameters required to run the sample scripts.

If you have multiple merchant IDs, or if you are a reseller handling multiple merchants, you can use different configuration settings depending on the merchant ID. See "Configuring Your Settings for Multiple Merchant IDs," page 389 for more information.

### Table 44 Configuration Settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>merchantID</td>
<td>Merchant ID. The client uses this value if you do not specify a merchant ID in the request itself.</td>
</tr>
<tr>
<td>keysDirectory</td>
<td>Location of the merchant’s security key. The client includes a <code>keys</code> directory that you can use. Include the path, for example: <code>../keys</code>, or <code>c:\simapi-php-1.0.0\keys</code>. <strong>Note</strong> We recommend that you store your key locally for faster request processing.</td>
</tr>
</tbody>
</table>
| sendToProduction| Flag that indicates whether the transactions for this merchant should be sent to the production server. Use one of these values:  
  - `false`: Do not send to the production server; send to the test server (default setting).  
  - `true`: Send to the production server. **Note** Make sure that if your merchant ID is configured to use the test mode, you send requests to the test server. |
| targetAPIVersion| Version of the Simple Order API to use. **Note** For a current list of the available versions, go to `https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor`. For information about what has changed in each version, see the Simple Order API Release Notes. |
| keyFilename     | Name of the security key file name for the merchant in the format `<security_key_filename>.p12`. |
| serverURL       | Alternate server URL to use. See "Using Alternate Server Configuration Settings," page 388 for more information. Give the complete URL because it will be used exactly as you specify here. |
| namespaceURI    | Alternate namespace URI to use. See "Using Alternate Server Configuration Settings," page 388 for more information. Give the complete namespace URI because it will be used exactly as you specify here. |
Table 44  Configuration Settings (Continued)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
</table>
| enableLog   | Flag directing the client to log transactions and errors. Use one of these values:  
|             | - false: Do not enable logging (default setting).  
|             | - true: Enable logging.  
|             | **Important**: Logging can cause very large log files to accumulate. Therefore, CyberSource recommends that you use logging only when troubleshooting problems. To comply with all Payment Card Industry (PCI) and Payment Application (PA) Data Security Standards regarding the storage of credit card and card verification number data, the logs that are generated contain only masked credit card and card verification number data (CVV, CVC2, CVV2, CID, CVN).  
|             | Follow these guidelines:  
|             | - Use debugging temporarily for diagnostic purposes only.  
|             | - If possible, use debugging only with test credit card numbers.  
|             | - Never store clear text card verification numbers.  
|             | - Delete the log files as soon as you no longer need them.  
|             | - Never send email to CyberSource containing personal and account information, such as customers' names, addresses, card or check account numbers, and card verification numbers.  
|             | For more information about PCI and PABP requirements, see www.visa.com/cisp.                                                                   |
| logDirectory| Directory to which to write the log file. Note that the client will not create this directory for you; you must specify an existing directory. The client includes a logs directory that you can use. Include the path, for example: ..\logs, or c:\simapi-php-1.0.0\logs. |
| logFilename | Log file name. The client uses cybs.log by default.                                                                                   |
| logMaximumSize | Maximum size in megabytes for the log file. The default value is 10. When the log file reaches the specified size, it is archived into cybs.log.<yyyymmdd>hhmmsxxx> and a new log file is started. The xxx indicates milliseconds. |
| sslCertFile | The location of the bundled file of CA Root Certificates (ca-bundle.crt) which is included in the client download package. The client automatically looks for the file in the directory where your security key is stored (specified by keysDirectory). If you move the file so it does not reside in keysDirectory, use this configuration setting to specify the full path to the file, including the file name. |
| timeout     | Length of time-out in seconds. The default is 110.                                                                                   |
Testing the Client

After you install and configure the client, test it immediately to ensure that the installation was successful.

To test the client:

Step 1 Go to the `<installation directory>/samples/nvp` directory.

Step 2 Run the test `authCaptureSample.php` script by typing:

```
php authCaptureSample.php
```

where `php` is the command-line interface (CLI) version. Depending on the PHP version, `php` may be in the main PHP directory, the `sapi/cli` directory, the `cli` directory, or it may be named `php-cli.exe` or `php.exe`. For example, for PHP 4.3.0 with Linux, you might have:

```
<PHP directory>/sapi/cli/php authCaptureSample.php
```

Or for PHP 4.3.8 with Windows, you might have:

```
<PHP directory>/cli\php authCaptureSample.php
```

or

```
<PHP directory>\php.exe authCaptureSample.php
```

The results of the test are displayed in the window.

- If the test is successful, a decision of ACCEPT appears for both the credit card authorization and the follow-on capture.
- If the test is not successful, a different decision value or an error message appears.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxyServer</td>
<td>Proxy server to use. Allowable formats include:</td>
</tr>
<tr>
<td></td>
<td>* <code>&lt;http://&gt;server&lt;:port&gt;</code></td>
</tr>
<tr>
<td></td>
<td>* <code>&lt;http://&gt;IP address&lt;:port&gt;</code></td>
</tr>
<tr>
<td></td>
<td>The http:// and port are optional.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> The default port is 1080. If your proxy server is listening on</td>
</tr>
<tr>
<td></td>
<td>another port, you must specify a port number.</td>
</tr>
<tr>
<td>proxyUsername</td>
<td>Username used to authenticate against the proxy server if required. If the</td>
</tr>
<tr>
<td></td>
<td>proxy server requires the domain name during authentication, add the domain</td>
</tr>
<tr>
<td></td>
<td>name and a backslash: <code>&lt;domain&gt;\&lt;username&gt;</code></td>
</tr>
<tr>
<td>proxyPassword</td>
<td>Password used to authenticate against the proxy server, if required.</td>
</tr>
</tbody>
</table>

Table 44 Configuration Settings (Continued)
To troubleshoot client test failures:

Step 1 Verify that your cybs.ini settings are correct.

Step 2 Run the test again.

Step 3 If the test still fails, look at the error message and determine the return status value (a numeric value from -1 to 8).

Step 4 See the descriptions of the status values in "Possible Return Status Values," page 362, and follow any instructions given there for the error you received.

Step 5 Run the test again.

Step 6 If the test still fails, contact Customer Support.

To run the XML sample:

Step 1 Go to the <installation directory>/sample/xml directory.

Step 2 For Windows, modify the cybs.ini in the folder with your settings (for Linux, make sure the samples/cybs.ini file is set how you want it).

Step 3 Run the test authSample.php script by typing:

```php authSample.php```

The results of the test are displayed in the window.

- If the test is successful, you see a decision of ACCEPT for both the credit card authorization and the follow-on capture.
- If the test is not successful, you see a different decision value or an error message. See "To troubleshoot client test failures;," page 357 to troubleshoot the error.

The client is installed and tested. You are ready to create your own code for requesting CyberSource services. For information about creating requests, see "Using Name-Value Pairs," page 366 if you plan to use name-value pairs, or "Using XML," page 376 if you plan to use XML.
Going Live

When you complete all of your system testing and are ready to accept real transactions from your customers, your deployment is ready to go live.

After your deployment goes live, use real card numbers and other data to test every card type you support. Because these are real transactions in which you are buying from yourself, use small monetary amounts to do the tests. Process an authorization, then capture the authorization, and later refund the money. Use your bank statements to verify that money is deposited into and withdrawn from your merchant bank account as expected. If you have more than one CyberSource merchant ID, test each one separately.

CyberSource Essentials Merchants

If you use CyberSource Essentials services, you can use the Business Center site to go live. For a description of the process of going live, see the “Steps for Getting Started” section in Getting Started with CyberSource Essentials.

Configure your client so that it can send transactions to the production server and not the test server. For more information, see the description of the configuration setting "sendToProduction," page 354.

CyberSource Advanced Merchants

If you use CyberSource Advanced services, see the “Steps for Getting Started” chapter in Getting Started with CyberSource Advanced for information about going live.

When your deployment goes live, your CyberSource account is updated so that you can send transactions to the CyberSource production server. If you have not already done so, you must provide your banking information to CyberSource so that your processor can deposit funds to your merchant bank account.

After CyberSource has confirmed that your account is live, make sure that you update your system so that it can send requests to the production server (ics2wsa.ic3.com) using your security key for the production environment. The test server (ics2wstesta.ic3.com) cannot be used for real transactions. For more information about sending transactions to the production server, see the description of the configuration setting "sendToProduction," page 354.
Chapter 9 PHP Client

Updating the Client to Use a Later API Version

CyberSource periodically updates the Simple Order API (previously called the Web Services API). You can update your existing client to work with the new API version. Go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor for a list of the available API versions. Or, if you are in test mode, go to https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor.

To update the client to use a later API version, update the value for the targetAPIVersion configuration parameter in the cybs.ini file. For example, to use the 1.18 version of the API, set the property to 1.18.

Special Installation Instructions for Oracle Users

If you are using Linux and an Oracle database, you must:

- Load the Oracle extensions dynamically
- In the php.ini file, load the CyberSource extension before the Oracle extensions

To load Oracle extensions dynamically after the CyberSource extension:

Step 1 At a command prompt, go to your PHP directory.

Step 2 Type the following:

make clean

Step 3 Execute configure so that you are loading the Oracle extensions dynamically. To do this, include “shared,” before the path to each Oracle extension. For example, you might execute configure as follows:

./configure --prefix=<target PHP directory>
--with-apxs=/usr/local/apache_1.3.32/bin/apxs
--with-oracle=shared,/home/u01/app/oracle/product/8.1.7
--with-oci8=shared,/home/u01/app/oracle/product/8.1.7
--without-mysql

Step 4 Type the following:

make

make install
Step 5 In the “Dynamic Extensions” section of the php.ini file, add the CyberSource extension before the Oracle extensions:

```plaintext
extension=php\n_cybersource.so
```

(where \n represents the version of PHP: 4, 5, 503, or 512)

```plaintext
extension = oracle.so
extension = oci8.so
```

Step 6 Save the php.ini file.

Step 7 Continue with the original installation instructions (see Step 7 on page 352).

PHP API for the Client

Summary of Functions

The client includes these functions:

- cybs_load_config()
- cybs_run_transaction()

cybs_load_config()

Table 45 cybs_load_config()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>array cybs_load_config(string filename)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Loads the configuration settings from a file</td>
</tr>
<tr>
<td>Returns</td>
<td>An array containing the configuration settings</td>
</tr>
<tr>
<td>Parameters</td>
<td>filename: Name of the configuration file</td>
</tr>
</tbody>
</table>
cybs_run_transaction()

Table 46 cybs_run_transaction()

<table>
<thead>
<tr>
<th>Syntax</th>
<th>int cybs_run_transaction(array config, array request, array reply)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Sends the request to the CyberSource server and receives the reply</td>
</tr>
<tr>
<td>Returns</td>
<td>A value that indicates the status of the request</td>
</tr>
<tr>
<td>Parameters</td>
<td>config: Configuration array to use</td>
</tr>
<tr>
<td>request:</td>
<td>Array containing one of these:</td>
</tr>
<tr>
<td></td>
<td>- The individual name-value pairs in the request (for name-value pair users)</td>
</tr>
<tr>
<td></td>
<td>- A single key called CYBS_SK_XML_DOCUMENT whose value is the XML document representing the request (for XML users)</td>
</tr>
<tr>
<td>reply:</td>
<td>Array containing one of these:</td>
</tr>
<tr>
<td></td>
<td>Note You must create this array before you call cybs_run_transaction().</td>
</tr>
<tr>
<td></td>
<td>- The individual name-value pairs in the reply (for name-value pair users)</td>
</tr>
<tr>
<td></td>
<td>- A single key called CYBS_SK_XML_DOCUMENT whose value is the XML document representing the reply (for XML users)</td>
</tr>
<tr>
<td></td>
<td>- A combination of the following keys and their values:</td>
</tr>
<tr>
<td></td>
<td>CYBS_SK_ERROR_INFO</td>
</tr>
<tr>
<td></td>
<td>CYBS_SK_RAW_REPLY</td>
</tr>
<tr>
<td></td>
<td>CYBS_SK_FAULT_DOCUMENT</td>
</tr>
<tr>
<td></td>
<td>CYBS_SK_FAULT_CODE</td>
</tr>
<tr>
<td></td>
<td>CYBS_SK_FAULT_STRING</td>
</tr>
<tr>
<td></td>
<td>CYBS_SK_FAULT_REQUEST_ID</td>
</tr>
</tbody>
</table>

See below for descriptions of these keys.

Reply Key Descriptions

- **CYBS_SK_ERROR_INFO**: Information about the error that occurred
- **CYBS_SK_RAW_REPLY**: The server’s raw reply
- **CYBS_SK_FAULT_DOCUMENT**: The entire, unparsed fault document
- **CYBS_SK_FAULT_CODE**: The fault code, which indicates where the fault originated
- **CYBS_SK_FAULT_STRING**: The fault string, which describes the fault
- **CYBS_SK_FAULT_REQUEST_ID**: The request ID for the request
Possible Return Status Values

The cybs_run_transaction() function returns a status indicating the result of the request. Table 47, "Possible Status Values," on page 362 describes the possible status values, including whether the error is critical. If an error occurs after the request has been sent to the server, but the client cannot determine whether the transaction was successful, then the error is considered critical. If a critical error happens, the transaction may be complete in the CyberSource system but not complete in your order system. The descriptions below indicate how to handle critical errors.

Note

The sample scripts display a numeric value for the return status, which is listed in the first column.

<table>
<thead>
<tr>
<th>Numeric Value (for Sample Scripts)</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 | CYBS_S_OK | Critical: No

 Result: The client successfully received a reply.

 For name-value pair users, the $reply array has the reply name-value pairs for the services that you requested.

 For XML users, the $reply array contains the response in XML format.

 Manual action to take: None |
| -1 | CYBS_S_PHP_PARAM_ERROR | Critical: No

 Result: The request was not sent because there was a problem with one or more of the parameters passed to the cybs_run_transaction() function.

 Manual action to take: Make sure the parameter values are correct. |
| 1 | CYBS_S_PRE_SEND_ERROR | Critical: No

 Result: An error occurred before the request could be sent. This usually indicates a configuration problem with the client.

 Error information to read:

 $reply[CYBS_SK_ERROR_INFO]

 Manual action to take: Fix the problem described in the error information. |
Chapter 9

PHP Client

<table>
<thead>
<tr>
<th>Numeric Value (for Sample Scripts)</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CYBS_S_SEND_ERROR</td>
<td>Critical: No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result: An error occurred while sending the request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error information to read:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$reply[CYBS_SK_ERROR_INFO]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manual action to take: None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: A typical send error that you might receive when testing occurs if the ca-bundle.crt file is not located in the same directory as your security key. For information about how to fix the problem, see the description of the configuration parameter "sslCertFile," page 355.</td>
</tr>
<tr>
<td>3</td>
<td>CYBS_S_RECEIVE_ERROR</td>
<td>Critical: Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result: An error occurred while waiting for or retrieving the reply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error information to read:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$reply[CYBS_SK_ERROR_INFO]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$reply[CYBS_SK_RAW_REPLY]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manual action to take: Check the Transaction Search screens on the Business Center to verify that the request was processed, and if so, whether it succeeded. Update your transaction database appropriately.</td>
</tr>
<tr>
<td>4</td>
<td>CYBS_S_POST_RECEIVE_ERROR</td>
<td>Critical: Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Result: The client received a reply or a fault, but an error occurred while processing it.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error information to read:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$reply[CYBS_SK_ERROR_INFO]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$reply[CYBS_SK_RAW_REPLY]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manual action to take: Examine the value of $reply[CYBS_SK_RAW_REPLY]. If you cannot determine the status of the request, then check the Transaction Search screens on the Business Center to verify that the request was processed, and if so, whether it succeeded. Update your transaction database appropriately.</td>
</tr>
</tbody>
</table>

Table 47 Possible Status Values (Continued)
Table 47 Possible Status Values (Continued)

<table>
<thead>
<tr>
<th>Numeric Value (for Sample Scripts)</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| 5 | CYBS_S_CRITICAL_SERVER_FAULT | Critical: Yes
Result: The server returned a fault with `$reply[CYBS_SK_FAULT_CODE]` set to CriticalServerError.
Error information to read:
$reply[CYBS_SK_ERROR_INFO]
$reply[CYBS_SK_FAULT_CODE]
$reply[CYBS_SK_FAULT_STRING]
$reply[CYBS_SK_FAULT_DOCUMENT]
$reply[CYBS_SK_FAULT_REQUEST_ID]
Manual action to take: Check the Transaction Search screens on the Business Center to verify that the request succeeded. When searching for the request, use the request ID provided by `$reply[CYBS_SK_FAULT_REQUEST_ID]`. |
| 6 | CYBS_S_SERVER_FAULT | Critical: No
Result: The server returned a fault with `$reply[CYBS_SK_FAULT_CODE]` set to ServerError, indicating a problem with the CyberSource server.
Error information to read:
$reply[CYBS_SK_ERROR_INFO]
$reply[CYBS_SK_FAULT_CODE]
$reply[CYBS_SK_FAULT_STRING]
$reply[CYBS_SK_FAULT_DOCUMENT]
Manual action to take: None |
Critical: No

Result: The server returned a fault with $reply[CYBS_SK_FAULT_CODE] set to a value other than ServerError or CriticalServerError. Indicates a possible problem with merchant status or the security key. Could also indicate that the message was tampered with after it was signed and before it reached the CyberSource server.

Error information to read:

$reply[CYBS_SK_ERROR_INFO]
$reply[CYBS_SK_FAULT_CODE]
$reply[CYBS_SK_FAULT_STRING]
$reply[CYBS_SK_FAULT_DOCUMENT]

Manual action to take: Examine the value of the $reply[CYBS_SK_FAULT_STRING] and fix the problem. You might need to generate a new security key, or you might need to contact Customer Support if there are problems with your merchant status.

Note: A typical error that you might receive occurs if your merchant ID is configured for “test” mode but you send transactions to the production server. For information about fixing the problem, see the description of the configuration parameter "sendToProduction," page 354.

Critical: No

Result: The server returned an HTTP status code other than 200 (OK) or 504 (gateway timeout). Note that if a 504 gateway timeout occurs, then the status=3.

Error information to read:

$reply[CYBS_SK_ERROR_INFO]
$reply[CYBS_SK_RAW_REPLY]

Value of varReply: CYBS_SK_RAW_REPLY contains the HTTP response body, or if none was returned, the literal "(no response available)".

Manual action to take: None.
Table 48 summarizes which reply information you receive for each status value.

Table 48 Reply Information Available for Each Status Value

<table>
<thead>
<tr>
<th>Status Values</th>
<th>CYBS_SK</th>
<th>CYBS_SK_ERROR_INFO</th>
<th>CYBS_SK_RAW_REPLY</th>
<th>CYBS_SK_FAULT_DOCUMENT</th>
<th>CYBS_SK_FAULT_CODE</th>
<th>CYBS_SK_FAULT_STRING</th>
<th>CYBS_SK_FAULT_REQUEST_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Name-value pairs or CYBS_SK_XML_DOCUMENT</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>CYBS_SK_ERROR_INFO</td>
<td>x x x x x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>CYBS_SK_RAW_REPLY</td>
<td>x x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>CYBS_SK_FAULT_DOCUMENT</td>
<td>x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>CYBS_SK_FAULT_CODE</td>
<td>x x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>CYBS_SK_FAULT_STRING</td>
<td>x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>CYBS_SK_FAULT_REQUEST_ID</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using Name-Value Pairs

This section explains how to use the client to request CyberSource services by using name-value pairs.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server

Important

The CyberSource servers do not support persistent HTTP connections.

- Processes the reply information

The instructions in this section explain how to use PHP to request CyberSource services. For a list of API fields to use in your requests, see "Related Documents," page 21.
Creating and Sending the Request

The code in this section’s example is incomplete. For a complete sample program, see the authCaptureSample.php file in the <installation directory>/samples/nvp directory, or see the sample PHP pages.

To use any CyberSource service, you must create and send a request that includes the required information for that service.

The following example shows the basic PHP code for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

Loading the Configuration Settings
First load the configuration settings from a file:

```php
$config = cybs_load_config( 'cybs.ini' );
```

You could instead create an array and add each configuration setting separately. You could also use a combination of the two methods: You could read the settings from a file and then add new settings dynamically with the array to override the settings read from the file.

Creating an Empty Request Array
You next create an array to hold the request fields:

```php
$request = array();
```

Adding the Merchant ID
You next add the CyberSource merchant ID to the request. You can let the CyberSource PHP extension automatically retrieve the merchant ID from the $config array, or you can set it directly in the $request array (see below). The $request array value overrides the $config array value.

```php
$request['merchantID'] = 'infodev';
```
Adding Services to the Request Array
You next indicate the service you want to use by adding the field to the request. For example, to request a credit card authorization:

```php
$request['ccAuthService_run'] = 'true';
```

Requesting a Sale
You can request multiple services by adding additional fields to the request. For example, if you fulfill the order immediately, you can request credit card authorization and capture together (referred to as a “sale”):

```php
$request['ccAuthService_run'] = 'true';
$request['ccCaptureService_run'] = 'true';
```

Adding Service-Specific Fields to the Request Array
You next add the fields that are used by the services that you are requesting. If you request multiple services and they share common fields, you must add the field once only.

```php
$request['merchantReferenceCode'] = '3009AF229L7W';
$request['billTo_firstName'] = 'Jane';
$request['billTo_lastName'] = 'Smith';
$request['card_accountNumber'] = '4111111111111111';
$request['item_0_unitPrice'] = '29.95';
```

The example above shows only a partial list of the fields you must send. Refer to "Related Documents," page 21 for information about the guides that list all of the fields for the services that you are requesting.

Sending the Request
You next create the array that will hold the reply and send the request:

```php
$reply = array();
$status = cybs_run_transaction( $config, $request, $reply );
```
Interpreting the Reply

Handling the Return Status

The $status value is the handle returned by the cybs_run_transaction() method. The $status indicates whether the CyberSource server received the request, the client received the reply, or there were any errors or faults during transmission. See "Possible Return Status Values," page 362 for descriptions of each status value. For an example in addition to the following one, see the authCaptureSample.php file in the <installation directory>/samples/nvp directory.

```php
if ($status == 0) {
    // Read the value of the "decision" in the $reply array.
    $decision = $reply['decision'];
    // If decision=ACCEPT, indicate to the customer that the request was successful.
    // If decision=REJECT, indicate to the customer that the order was not approved.
    // If decision=ERROR, indicate to the customer that an error occurred and to try again later.
    // Now get reason code results:
    // $strContent = getReplyContent( $reply);
    // See "Processing the Reason Codes," page 371 for how to process the reasonCode from the reply.
    // Note that getReplyContent() is included in this document to help you understand how to process reason codes, but it is not included as part of the sample scripts or sample PHP pages.
}
else {
    handleError( $status, $request, $reply );
}
```

```php
//---------------------
function handleError( $status, $request, $reply )
//---------------------
// handleError() shows how to handle the different errors that can occur.
{
    switch ($status) {
        // There was a problem with the parameters passed to cybs_run_transaction()
        case CYBS_S_PHP_PARAM_ERROR:
            // Non-critical error.
            // Tell customer the order could not be completed and to try again later.
            // Notify appropriate internal resources of the error.
            break;

        // An error occurred before the request could be sent.
        case CYBS_S_PRE_SEND_ERROR:
            // Non-critical error.
            // Tell customer the order could not be completed and to try again later.
            // Notify appropriate internal resources of the error.
    }
```
break;

// An error occurred while sending the request.
case CYBS_S_SEND_ERROR:
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 break;
// An error occurred while waiting for or retrieving the reply.
case CYBS_S_RECEIVE_ERROR:
 // Critical error.
 // Tell customer the order cannot be completed and to try again later.
 // Notify appropriate internal resources of the error.
 // See the sample code for more information about handling critical errors.
 break;

// An error occurred after receiving and during processing of the reply.
case CYBS_S_POST_RECEIVE_ERROR:
 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Look at CYBS_SK_RAW_REPLY in $reply for the raw reply.
 // Notify appropriate internal resources of the error.
 // See the sample code for more information about handling critical errors.
 break;

// CriticalServerError fault
case CYBS_S_CRITICAL_SERVER_FAULT:
 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Read the various fault details from the $reply.
 // Notify appropriate internal resources of the fault.
 // See the sample code for more information about reading fault details and
 // handling a critical error.
 break;

// ServerError fault
case CYBS_S_SERVER_FAULT:
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Read the various fault details from the $reply.
 // See the sample code for information about reading fault details.
 break;

// Other fault
case CYBS_S_OTHER_FAULT:
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Read the various fault details from the $reply.
 // Notify appropriate internal resources of the fault.
 // See the sample code for information about reading fault details.
 break;
Processing the Reason Codes

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Important

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply.

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - ACCEPT if the request succeeded
 - REJECT if one or more of the services in the request was declined
 - REVIEW if you are a CyberSource Advanced merchant using CyberSource Decision Manager and it flags the order for review. See "Handling Decision Manager Reviews," page 373 for more information.
 - ERROR if there was a system error. See "Retrying When System Errors Occur," page 375 for important information about handling system errors.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card
authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

Important

CyberSource reserves the right to add new reason codes at any time. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.

The following is an example:

```php
// Note that getReplyContent() is included in this document to help you understand how to process reason codes, but it is not included as part of the sample scripts or sample PHP pages.

function getReplyContent( $reply ) {
    $reasonCode = $reply['reasonCode'];
    switch ($reasonCode) {
        // Success
        case '100':
            return( sprintf("Request ID: \$s
AuthorizedAmount: \$s
Authorization Code: \$s," ,
                $reply['requestID'], $reply['ccAuthReply_amount'],
                $reply['ccAuthReply_authorizationCode'] ));
            break;
        // Insufficient funds
        case '204':
            return( sprintf("Insufficient funds in account. Please use a different card or select another form of payment." ));
            break;
        // Add other reason codes here that you must handle specifically. For all other reason codes, return an empty string, in which case, you should display a generic message appropriate to the decision value you received.
        default:
            return ( '' );
    }
}
```
Handling Decision Manager Reviews

If you use CyberSource Decision Manager, you may also receive the REVIEW value in the decision field. REVIEW means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new REVIEW value. Ideally, you will update your order management system to recognize the REVIEW response and handle it according to your business rules. If you cannot update your system to handle the REVIEW response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the REVIEW response like a REJECT response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to ACCEPT in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to ACCEPT in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.
Chapter 9 PHP Client

Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

This following additional example applies to CyberSource Advanced merchants only.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the businessRules_ignoreAVSResult field to “true” in your combined authorization and capture request:

```php
$request['businessRules_ignoreAVSResult'] = 'true';
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

Note

You are charged only for the services that CyberSource performs.
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.
Using XML

This section describes how to request CyberSource services using XML.

Requesting CyberSource Services

To request CyberSource services, write code that:

- Collects information for the CyberSource services that you will use
- Assembles the order information into requests
- Sends the requests to the CyberSource server

The CyberSource servers do not support persistent HTTP connections.

Important

- Processes the reply information

The instructions in this section explain how to write the code that requests these services. For a list of API fields to use in your requests, see "Related Documents," page 21.

Sample Code

We suggest that you examine the name-value pair sample code provided in authCaptureSample.php before implementing your code to process XML requests. The sample will give you a basic understanding of how to request CyberSource services. The sample code file is located in the <installation directory>/samples/nvp directory.

After examining that sample code, read this section to understand how to create code to process XML requests. Note that the code in this section’s example is incomplete. For a complete sample program, see the authSample.php file in the <installation directory>/samples/xml directory.
Creating a Request Document

The client allows you to create an XML request document using any application, then send the request to CyberSource. For example, if you have a customer relationship management (CRM) system that uses XML to communicate with other systems, you can use the CRM system to generate request documents.

The request document must validate against the XML schema for CyberSource transactions. To view the schema, go to https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor and look at the XSD file for the version of the Simple Order API you are using.

Make sure that the elements in your document appear in the correct order. If they do not, your document will not validate, and your request will fail.

The example developed in the following sections shows a basic XML document for requesting CyberSource services. In this example, Jane Smith is buying an item for $29.95.

The XML document in this example is incomplete. For a complete example, see the auth.xml document in the samples/xml directory.

Creating an Empty Request

Add the XML declaration and the document’s root element:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
</requestMessage>
```

When you construct a request, you must indicate the correct namespace for the elements, and the namespace must use the same API version that you specify in the configuration settings file. For example, if targetAPIVersion=1.18 in the cybs.ini file, the namespace must be urn:schemas-cybersource-com:transaction-data-1.18.

The XML document that you receive in the reply always uses a prefix of c: (for example, xmlns:c="urn:schemas-cybersource-com:transaction-data-1.18"). Make sure you use an XML parser that supports namespaces.
Adding the Merchant ID
You next add the CyberSource merchant ID to the request.

If you specify a merchant ID in the XML document, it overrides the merchant ID you specify in the configuration settings file.

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
</requestMessage>
```

Adding Services to the Request
You next indicate the service that you want to use by creating an element for that service in the request, then setting the element's `run` attribute to `true`. For example, to request a credit card authorization:

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
  <ccAuthService run="true"/>
</requestMessage>
```

Requesting a Sale
You can request multiple services by adding additional elements. For example, if you fulfill the order immediately, you can request a credit card authorization and capture together (referred to as a "sale"):

```xml
<?xml version="1.0" encoding="utf-8"?>
<requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
  <ccAuthService run="true"/>
  <ccCaptureService run="true"/>
</requestMessage>
```
Adding Service-Specific Fields to the Request

You next add the fields that are used by the services you are requesting. Most fields are child elements of container elements; for example, a `<card>` element contains the customer’s credit card information.

```xml
<?xml version="1.0" encoding="utf-8"?>
:requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-1.18">
  <merchantID>infodev</merchantID>
  <billTo>
    <firstName>Jane</firstName>
    <lastName>Smith</lastName>
  </billTo>
  <item id="0">
    <unitPrice>29.95</unitPrice>
  </item>
  <card>
    <accountNumber>4111111111111111</accountNumber>
  </card>
  <ccAuthService run="true"/>
</requestMessage>
```

The example above shows only a partial list of the fields you must send. Refer to “Related Documents,” page 21 for information about the guides that list all of the fields for the services that you are requesting.

Sending the Request

Once you have created an XML document, you use PHP to send the request to CyberSource.

Loading the Configuration Settings

First load the configuration settings from a file:

```php
$config = cybs_load_config( 'cybs.ini' );
```

Note

The namespace that you specify in the XML document must use the same API version that you specify in the configuration settings file. For example, if `targetAPIVersion=1.18` in the file, the namespace must be `urn:schemas-cybersource-com:transaction-data-1.18`. The example code below retrieves the API version from the configuration settings file and places it in the XML document.
Reading the XML Document

```php
// Read the XML document.
// See the authSample.php script for
// the implementation of getFileContent().
$inputXML = getFileContent( "MyXMLDocument.xml" );

// Retrieve the target API version from the configuration settings
// and replace the value in the XML document.
$inputXML = str_replace("_APIVERSION_", $config[CYBS_C_TARGET_API_VERSION], $inputXML );
```

Sending the Request

You next create the request array, add the XML document to the array, and send the request:

```php
$request = array();
$request[CYBS_SK_XML_DOCUMENT] = $inputXML;

// send request
$reply = array();
$status = cybs_run_transaction( $config, $request, $reply );
```
Interpreting the Reply

Handling the Return Status

The $status value is the handle returned by the cybs_run_transaction() method. The $status indicates whether the CyberSource server received the request, the client received the reply, or there were any errors or faults during transmission. See "Possible Return Status Values," page 362 for descriptions of each status value. For an example in addition to the following one, see the authSample.php file in the client's <installation directory>/samples/xml directory.

if ($status == CYBS_S_OK)
 // Read the value of the "decision" in the oReplyMessage.
 // This code assumes you have a method called getField ()
 // that retrieves the specified field from the XML document
 // in $reply[CYBS_SK_XML_DOCUMENT].
 $decision = getField($reply, "decision");
 // If decision=ACCEPT, indicate to the customer that
 // the request was successful.
 // If decision=REJECT, indicate to the customer that the
 // order was not approved.
 // If decision=ERROR, indicate to the customer that there
 // was an error and to try again later.
 // Now get reason code results:
 // $strContent = getReplyContent($reply);
 // See "Processing the Reason Codes," page 371 for how to process the reasonCode
 // from the reply.
 // Note that getReplyContent() is included in this document to help you understand
 // how to process reason codes, but it is not included as part of the sample
 // scripts or sample PHP pages.
else {
 handleError($status, $request, $reply);
}

function handleError($status, $request, $reply)
{
 switch ($status)
 {
 case CYBS_S_PHP_PARAM_ERROR:
 // There was a problem with the parameters passed to
 // cybs_run_transaction()
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Notify appropriate internal resources of the error.
 break;
 // An error occurred before the request could be sent.
}
case CYBS_S_PRB_SEND_ERROR:
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Notify appropriate internal resources of the error.
 break;

// An error occurred while sending the request.
case CYBS_S_SEND_ERROR:
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 break;

// An error occurred while waiting for or retrieving
// the reply.
case CYBS_S_RECEIVE_ERROR:
 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Notify appropriate internal resources of the error.
 // See the sample code for more information about handling critical errors.
 break;

// An error occurred after receiving and during processing
// of the reply.
case CYBS_S_POST_RECEIVE_ERROR:
 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Look at CYBS.SK_RAW_REPLY in $reply for the raw reply.
 // Notify appropriate internal resources of the error.
 // See the sample code for more information about handling critical errors.
 break;

// CriticalServerError fault
case CYBS_S_CRITICAL_SERVER_FAULT:
 // Critical error.
 // Tell customer the order could not be completed and to try again later.
 // Read the various fault details from the $reply.
 // Notify appropriate internal resources of the fault.
 // See the sample code for more information about reading fault details and
 // handling a critical error.
 break;

// ServerError fault
case CYBS_S_SERVER_FAULT:
 // Non-critical error.
 // Tell customer the order could not be completed and to try again later.
 // Read the various fault details from the $reply.
 // See the sample code for information about reading fault details.
 break;
After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

The most important reply fields to evaluate are the following:

- **decision**: A one-word description of the results of your request. The decision is one of the following:
 - ACCEPT if the request succeeded
 - REJECT if one or more of the services in the request was declined
 - REVIEW if you use CyberSource Decision Manager and it flags the order for review. See "Handling Decision Manager Reviews," page 385 for more information.

```php
// Other fault
case CYBS_S_OTHER_FAULT:
    // Non-critical error.
    // Tell customer the order could not be completed and to try again later.
    // Read the various fault details from the $reply.
    // Notify appropriate internal resources of the fault.
    // See the sample code for information about reading fault details.
    break;

// HTTP error
Case CYBS_S_HTTP_ERROR:
    // Non-critical error.
    // Tell customer the order could not be completed and to try again later.
    // Look at CYBS_SK_RAW_REPLY in $reply for the raw reply.
    break;
} }
```

Processing the Reason Codes

After the CyberSource server processes your request, it sends a reply message that contains information about the services you requested. You receive different fields depending on the services you request and the outcome of each service.

To use the reply information, you must integrate it into your system and any other system that uses that data. For example, you can store the reply information in a database and send it to other back office applications.

You must write an error handler to process the reply information that you receive from CyberSource. Do not show the reply information directly to customers. Instead, present an appropriate response that tells customers the result.

Because CyberSource may add reply fields and reason codes at any time, you should parse the reply data according to the names of the fields instead of their order in the reply. If your error handler receives a reason code that it does not recognize, it should use the decision to interpret the reply.
ERROR if there was a system error. See "Retrying When System Errors Occur," page 387 for important information about handling system errors.

- **reasonCode**: A numeric code that provides more specific information about the results of your request.

You also receive a reason code for each service in your request. You can use these reason codes to determine whether a specific service succeeded or failed. If a service fails, other services in your request may not run. For example, if you request a credit card authorization and capture, and the authorization fails, the capture does not run. The reason codes for each service are described in the Credit Card Services User Guide for CyberSource Essentials merchants or in the service developer guide for CyberSource Advanced merchants.

The following is an example:

```php
// Note that getReplyContent() is included in this document to help you understand how to process reason codes, but it is not included as part of the sample scripts or sample PHP pages.
// This code assumes you have a method called getField() that retrieves the specified field from the XML document in $reply['CYBS.SK.XML_DOCUMENT'].

function getReplyContent( $reply )
{
    $reasonCode = $reply['reasonCode']
    switch ($reasonCode)
    {
    // Success
    case '100':
        return( sprintf( "Request ID: \$s
AuthorizedAmount: \$s
Authorization Code: \$s,
getField( $reply, 'requestID' ), getField ( $reply, 'ccAuthReply/amount' ),
getField( $reply, 'ccAuthReply/authorizationCode' ) ) );
        break;
    // Insufficient funds
    case '204':
        return( sprintf( "Insufficient funds in account. Please use a different card or select another form of payment." ) );
        break;
    }
}
```
Handling Decision Manager Reviews

If you use CyberSource Decision Manager, you may also receive the `REVIEW` value in the `decision` field. `REVIEW` means that Decision Manager has marked the order for review based on how you configured the Decision Manager rules.

If you will be using Decision Manager, you have to determine how to handle the new `REVIEW` value. Ideally, you will update your order management system to recognize the `REVIEW` response and handle it according to your business rules. If you cannot update your system to handle the `REVIEW` response, CyberSource recommends that you choose one of these options:

- If you authorize and capture the credit card payment at the same time, treat the `REVIEW` response like a `REJECT` response. Rejecting any orders that are marked for review may be appropriate if your product is a software download or access to a Web site. If supported by your processor, you may also want to reverse the authorization.

- If you approve the order after reviewing it, convert the order status to `ACCEPT` in your order management system. You can request the credit card capture without requesting a new authorization.

- If you approve the order after reviewing it but cannot convert the order status to `ACCEPT` in your system, request a new authorization for the order. When processing this new authorization, you must disable Decision Manager. Otherwise the order will be marked for review again. For details about the API field that disables Decision Manager, see the Decision Manager Developer Guide Using the Simple Order API (PDF | HTML) or the Decision Manager Developer Guide Using the SCMP Order API (PDF | HTML).

Alternately, you can specify a custom business rule in Decision Manager so that authorizations originating from a particular internal IP address at your company are automatically accepted.

If supported by your processor, you may want to reverse the original authorization.

```cpp
// add other reason codes here that you must handle specifically. For all
// other reason codes, return an empty string, in which case, you should
// display a generic message appropriate to the decision value you received.
default:
  return ( '' );
}
```
Requesting Multiple Services

When you request multiple services in one request, CyberSource processes the services in a specific order. If a service fails, CyberSource does not process the subsequent services in the request.

For example, in the case of a sale (a credit card authorization and a capture requested together), if the authorization service fails, CyberSource will not process the capture service. The reply you receive only includes reply fields for the authorization.

This following additional example applies to CyberSource Advanced merchants only.

Many CyberSource services include “ignore” fields that tell CyberSource to ignore the result from the first service when deciding whether to run the subsequent services. In the case of the sale, even though the issuing bank gives you an authorization code, CyberSource might decline the authorization based on the AVS or card verification results. Depending on your business needs, you might choose to capture these types of declined authorizations anyway. You can set the businessRules_ignoreAVSResult field to “true” in your combined authorization and capture request:

```
<businessRules>
  <ignoreAVSResult>true</ignoreAVSResult>
</businessRules>
```

This tells CyberSource to continue processing the capture even if the AVS result causes CyberSource to decline the authorization. In this case you would then get reply fields for both the authorization and the capture in your reply.

You are charged only for the services that CyberSource performs.

Note
Retrying When System Errors Occur

You must design your transaction management system to include a way to correctly handle CyberSource system errors. Depending on which payment processor is handling the transaction, the error may indicate a valid CyberSource system error, or it may indicate a processor rejection because of some type of invalid data. In either case, CyberSource recommends that you do not design your system to retry sending a transaction many times in the case of a system error.

Instead, CyberSource recommends that you retry sending the request only two or three times with successively longer periods of time between each retry. For example, after the first system error response, wait 30 seconds and then retry sending the request. If you receive the same error a second time, wait one minute before you send the request again. Depending on the situation, you may decide you can retry sending the request after a longer time period. Determine what is most appropriate for your business situation.

If after several retry attempts you are still receiving a system error, it is possible that the error is actually being caused by a processor rejection and not a CyberSource system error. In that case, we suggest that you either:

- Search for the transaction in the Business Center, look at the description of the error on the Transaction Detail page, and call your processor to determine if and why they are rejecting the transaction.

- Contact CyberSource Customer Support to confirm whether your error is truly caused by a CyberSource system issue.

If TSYS Acquiring Solutions is your processor, you may want to follow the first suggestion as there are several common TSYS Acquiring Solutions processor responses that are returned to you as system errors and that only TSYS Acquiring Solutions can address.
Advanced Configuration Settings

Using Alternate Server Configuration Settings

You use the serverURL and namespaceURI configuration settings if CyberSource changes the convention we use to specify the server URL and namespace URI, but we have not updated the client yet.

For example, these are the server URLs and namespace URI for accessing the CyberSource services using the Simple Order API version 1.18:

- Test server URL:
 https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

- Production server URL:
 https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

- Namespace URI:

Note

If you view the above URLs in a web browser, a list of the supported API versions and the associated schema files are displayed.

If in the future CyberSource changes these conventions, but does not provide a new version of the client, you can configure your existing client to use the new server and namespace conventions required by the CyberSource server.
Chapter 9 PHP Client

Configuring Your Settings for Multiple Merchant IDs

If you have multiple merchant IDs, or if you are a reseller handling multiple merchants, you can have different configuration settings for different merchant IDs. You set these in the configuration object that you pass to the cybs_run_transaction() function. When using the samples provided in the client package, you set the configuration parameters in cybs.ini file.

All of the properties except merchantID can be prefixed with <merchantID>. to specify the settings for a specific merchant.

Example Merchant-Specific Properties Settings

If you have a merchant with merchant ID of merchant123, and you want enable logging only for that merchant, you can set the enableLog parameter to true for all requests that have merchant123 as the merchant ID:

merchant123.enableLog=true
enableLog=false

The client disables logging for all other merchants.
Using the Client Application Fields

This appendix lists optional client application fields that you can include in your request to describe your client application. Use these fields only if you are building an application to sell to others. For example, a shopping cart application. Do not use the fields if you are only integrating the client with your own web store.

Table 49 Client Application Fields

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
<th>Data Type and Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>clientApplication</td>
<td>Application or integration that uses the client: for example: ShoppingCart Pro or Web Commerce Server. Do not include a version number.</td>
<td>String (50)</td>
</tr>
<tr>
<td>clientApplicationVersion</td>
<td>Version of the application or integration, for example: 5.0 or 1.7.3.</td>
<td>String (50)</td>
</tr>
<tr>
<td>clientApplicationUser</td>
<td>User of the application or integration, for example: jdoe.</td>
<td>String (30)</td>
</tr>
</tbody>
</table>

If you use these fields in your request, you can view their values in the Transaction Search Details window of the Business Center.
INDEX

Symbols

.NET 1.1 client
 API version 117
 API version, updating 128
 application settings file, name-value pairs 139
 application settings file, SOAP 161
 application settings file, XML 151
 code example. See sample code 118
 configuring IP addresses for 119
 configuring test applications for 123
 connection limits 162
 connectionManagement 162
 creating requests, name-value pairs 130
 creating requests, SOAP 152
 creating requests, XML 140
 cybs.connectionLimit 162
 decisions, name-value pairs 134
 decisions, SOAP 156
 decisions, XML 146
 DefaultConnectionLimit 163
 deploying client to another computer 126
 ESYSTEM errors. See system errors
 example code. See sample code
 installation 120
 interpreting replies, name-value pairs 133
 interpreting replies, SOAP 156
 interpreting replies, XML 145
 keys. See transaction security keys
 merchants, configuring 125
 namespace URI 141
 reason codes, name-value pairs 134
 reason codes, SOAP 156
 reason codes, XML 146
 requesting multiple services, name-value pairs 138
 requesting multiple services, SOAP 160
 requesting multiple services, XML 150
 retries. See system errors
 REVIEW decision, name-value pairs 134
 REVIEW decision, SOAP 156
 REVIEW decision, XML 146
 running test applications 126
 sample code 118
 security keys. See transaction security keys
 sending requests, name-value pairs 132
 sending requests, SOAP 155
 sending requests, XML 144
 system errors 139, 151, 161
 system requirements 119
 target API version 117
 test applications 122
 transaction security keys 120
 transaction security keys directory 123
 updating API version 128
 XML schema 140

.NET 2.0 client
 API version 165
 API version, updating 176
 application settings file, SOAP 209
 application settings file, XML 199
 applications settings file, name-value pairs 187
 code example. See sample code
 configuring IP addresses for 167
 configuring test applications for 170
 connection limits 210
 connectionManagement 210
 creating requests, name-value pairs 178
creating requests, SOAP 200
creating requests, XML 189
cybs.connectionLimit 210
decisions, name-value pairs 182
decisions, SOAP 204
decisions, XML 194
DefaultConnectionLimit 211
deploying client to another computer 174
ESYSTEM errors. See system errors
every code. See sample code
increasing connection limits 210
installation 167
interpreting replies, name-value pairs 182
interpreting replies, SOAP 204
interpreting replies, XML 193
keys. See transaction security keys
merchants, configuring 173
namespace URI 189
reason codes, name-value pairs 182
reason codes, SOAP 204
reason codes, XML 194
requesting multiple services, name-value pairs 186
requesting multiple services, SOAP 208
requesting multiple services, XML 198
retries. See system errors 199
REVIEW decision, name-value pairs 182
REVIEW decision, SOAP 204, 207
REVIEW decision, XML 194, 197
running test applications 174
sample code 165
security keys. See transaction security keys
sending requests, name-value pairs 181
sending requests, SOAP 203
sending requests, XML 192
system errors 187, 199, 209
system requirements 167
target API version 165
test applications 174
transaction security keys 167
transaction security keys directory 171
updating API version 176
XML schema 189

.NET 4.0 client

API version 217
API version, updating 228
application settings file, SOAP 260
application settings file, XML 250
applications settings file, name-value pairs 238
code example. See sample code
configuring IP addresses for 219
configuring test applications for 223
connection limits 261
creationManagement 261
creating requests, name-value pairs 230
creating requests, SOAP 251
creating requests, XML 240
cybs.connectionLimit 261
decisions, name-value pairs 233
decisions, SOAP 255
decisions, XML 245
DefaultConnectionLimit 262
deploying client to another computer 227
ESYSTEM errors. See system errors
every code. See sample code
increasing connection limits 261
installation 219
interpreting replies, name-value pairs 233
interpreting replies, SOAP 255
interpreting replies, XML 244
keys. See transaction security keys
merchants, configuring 226
namespace URI 240
reason codes, name-value pairs 233
reason codes, SOAP 255
reason codes, XML 245
requesting multiple services, name-value pairs 237
requesting multiple services, SOAP 259
requesting multiple services, XML 249
retries. See system errors 250
REVIEW decision, name-value pairs 233
REVIEW decision, SOAP 255, 258
REVIEW decision, XML 245, 248
running test applications 227
sample code 217
security keys. See transaction security keys
sending requests, name-value pairs 232
sending requests, SOAP 254
sending requests, XML 243
system errors 238, 250, 260
system requirements 219
target API version 217
test applications 227
transaction security keys 219
transaction security keys directory 224
updating API version 228
XML schema 240

A

ASP client
- API version 25
- API version, updating 33
- AuthCaptureSample.wsf 27
- AuthSample.wsf 27
- character set support 29
- Client object 45
- code example. See sample code config.vbs 30
- configuring IP addresses for 29
- Copy method of MerchantConfig 37
- Copy method of ProxyConfig 39
- creating requests, name-value pairs 48
- creating requests, XML 58
decisions, name-value pairs 53
decisions, XML 65
- Delete method 41
deploying client to another computer 32
- DOMDocument40 object 46, 47, 59, 62
- encoding. See character set support ESYSTEM errors. See system errors example code. See sample code Fault object 44
- hashtable 49
- Hashtable object 40
- installation 29
- interpreting replies, name-value pairs 50
- interpreting replies, XML 63
- keys. See transaction security keys Log method 43

Logger object 42
LogTransactionStart method 44
MerchantConfig object 34
MerchantConfig object, name-value pairs 49
MerchantConfig object, XML 61
MSXML 4.0 32, 46, 59
namespace URI 37, 59, 62
PrepareFile method 43
ProxyConfig object 38
reason codes, name-value pairs 53
reason codes, XML 65
requesting multiple services, name-value pairs 56
requesting multiple services, XML 68
retries. See system errors return status values 45
REVIEW decision, name-value pairs 55
REVIEW decision, XML 67
RunTransaction method 45
sample code 25, 26
sample scripts 30
security keys. See transaction security keys sending requests, name-value pairs 50
sending requests, XML 61
server URL 37
system errors 57, 69
system requirements 28
target API version 25, 34
test server URL 37
testing the client 30
transaction security keys 29
transaction security keys directory 29
updating API version 33
UTF-8 support. See character set support varReply values 47
varRequest values 46
WinHTTP 28
XML schema 59

C

C/C++ client
- alternate server settings 114
- API version 70
API version, updating | updating API version 80
authCaptureSample.c | authCaptureSample.c | authCaptureSample.c 71
ca-bundle.crt file | ca-bundle.crt file | ca-bundle.crt file 74, 76, 87
character set support | character set support | character set support 73
code example. See sample code | code example. See sample code | code example. See sample code
configuration of client | configuration of client | configuration of client 75
collection, name-value pairs | configuration settings, name-value pairs | configuration settings, name-value pairs 91
collection, XML | configuration settings, XML | configuration settings, XML 104
collection, IP addresses for | configuring IP addresses for | configuring IP addresses for 73
collection, test applications for | configuring test applications for | configuring test applications for 75
collection, name-value pairs | creating requests, name-value pairs | creating requests, name-value pairs 91
collection, XML | creating requests, XML | creating requests, XML 101
cybs.ini file | cybs.ini file | cybs.ini file 75
cybs_add() | cybs_add() | cybs_add() 82
cybs_create_map() | cybs_create_map() | cybs_create_map() 81
cybs_create_map_string() | cybs_create_map_string() | cybs_create_map_string() 84
cybs_destroy_map() | cybs_destroy_map() | cybs_destroy_map() 81
cybs_destroy_map_string() | cybs_destroy_map_string() | cybs_destroy_map_string() 85
cybs_get() | cybs_get() | cybs_get() 83
cybs_get_count() | cybs_get_count() | cybs_get_count() 84
cybs_get_first() | cybs_get_first() | cybs_get_first() 83
cybs_get_next() | cybs_get_next() | cybs_get_next() 84
cybs_load_config() | cybs_load_config() | cybs_load_config() 81
cybs_remove() | cybs_remove() | cybs_remove() 82
cybs_run_transaction() | cybs_run_transaction() | cybs_run_transaction() 85
cybs_set_add_behavior() | cybs_set_add_behavior() | cybs_set_add_behavior() 82
decision, name-value pairs | decisions, name-value pairs | decisions, name-value pairs 96
decision, XML | decisions, XML | decisions, XML 109
enableLog | enableLog | enableLog 76
encoding. See character set support | encoding. See character set support | encoding. See character set support
ESYSTEM errors. See system errors | ESYSTEM errors. See system errors | ESYSTEM errors. See system errors
example code. See sample code | example code. See sample code | example code. See sample code
handling REVIEW decision with XML | handling REVIEW decision with XML | handling REVIEW decision with XML 111
installation | installation | installation 74
interpreting replies, name-value pairs | interpreting replies, XML | interpreting replies, XML 93
interpreting replies, XML | interpreting replies, XML | interpreting replies, XML 105
keyFilename client configuration setting | keyFilename client configuration setting | keyFilename client configuration setting 75
keys. See transaction security keys | keys. See transaction security keys | keys. See transaction security keys
keysDirectory client configuration setting | keysDirectory client configuration setting | keysDirectory client configuration setting 75
log file | log file | log file 76
logDirectory | logDirectory | logDirectory 76
logFilename | logFilename | logFilename 76
logMaximumSize | logMaximumSize | logMaximumSize 76
merchantID | merchantID | merchantID 75
merchants, configuring | merchants, configuring | merchants, configuring 75, 115
multiple merchant IDs | multiple merchant IDs | multiple merchant IDs 115
namespace URI | namespace URI | namespace URI 75, 102, 114
production server URL | production server URL | production server URL 114
proxyPassword | proxyPassword | proxyPassword 77
proxyServer | proxyServer | proxyServer 76
proxyUsername | proxyUsername | proxyUsername 77
reason codes, name-value pairs | reason codes, name-value pairs | reason codes, name-value pairs 96
reason codes, XML | reason codes, XML | reason codes, XML 109
requesting multiple services, name-value pairs | requesting multiple services, name-value pairs | requesting multiple services, name-value pairs 99
requesting multiple services, XML | requesting multiple services, XML | requesting multiple services, XML 112
retries. See system errors | retries. See system errors | retries. See system errors
return status values | return status values | return status values 86
REVIEW decision, name-value pairs | REVIEW decision, name-value pairs | REVIEW decision, name-value pairs 96
REVIEW decision, XML | REVIEW decision, XML | REVIEW decision, XML 109
sample code | sample code | sample code 71
security keys. See transaction security keys | security keys. See transaction security keys | security keys. See transaction security keys
sending requests, name-value pairs | sending requests, name-value pairs | sending requests, name-value pairs 92
sending requests, XML | sending requests, XML | sending requests, XML 104
sendToProduction | sendToProduction | sendToProduction 75
serverURL | serverURL | serverURL 75, 114
sslCertFile | sslCertFile | sslCertFile 76
system errors | system errors | system errors 99, 113
system requirements | system requirements | system requirements 73
target API version | target API version | target API version 70, 75, 335
test server URL | test server URL | test server URL 114
testing the client | testing the client | testing the client 77
timeout | timeout | timeout 76
transaction security keys | transaction security keys | transaction security keys 74
updation API version | updating API version | updating API version 80
UTF-8 support. See character set support | UTF-8 support. See character set support | UTF-8 support. See character set support
XML schema | XML schema | XML schema 101

D

Decision Manager

using with the .NET 1.1 client | using with the .NET 1.1 client | using with the .NET 1.1 client 134, 146, 156
using with the .NET 2.0 client | using with the .NET 2.0 client | using with the .NET 2.0 client 182, 185, 194, 197, 204, 207
using with the .NET 4.0 client | using with the .NET 4.0 client | using with the .NET 4.0 client 233, 236, 245, 248, 255, 258
using with the ASP client | using with the ASP client | using with the ASP client 53, 55, 65, 67
using with the C/C++ client | using with the C/C++ client | using with the C/C++ client 96, 109
using with the Java client 281, 284, 291, 294
using with the Perl client 326, 338, 340
using with the PHP client 371, 373, 383, 385

J

Java client
- alternate server properties 296
- API version 267
code example. See sample code
- creating requests, name-value pairs 278
creating requests, XML 287
cybs.properties file 272
debugging 273
decisions, name-value pairs 281
decisions, XML 291
enableLog 273
entrust_ssl_ca.cer 299
ESYSTEM errors. See system errors
equivalent code example. See sample code
IBM Java SDK 270, 298
installation 270
interpreting replies, name-value pairs 280
interpreting replies, XML 291
JSSE 270
keyFilename client configuration setting 273
keys. See transaction security keys
keysDirectory client configuration setting 273
log file 273
logDirectory 274
logFilename 274
logMaximumSize 274
merchantID 273
merchants, configuring 273
multiple merchant IDs 296
namespace URI 273, 287, 296
Oracle Java SDK 270, 297
production server URL 296
proxyHost 274
proxyPassword 274
proxyPort 274
proxyUser 274

reason codes, name-value pairs 281
reason codes, XML 291
requesting multiple services, name-value pairs 278
requesting multiple services, XML 288
retries. See system errors
REVIEW decision, name-value pairs 281, 284
REVIEW decision, XML 291, 294
code example. See sample code
security keys. See transaction security keys
sending requests, name-value pairs 280
sending requests, XML 290
sendToProduction 273
server URL 296
serverURL 273
system errors 284, 294
system properties 297
system requirements 270
target API version 267, 273
test server URL 296
testing 275
timeout 274
transaction security keys 271
useHttpClient 274
XML schema 287

P

Perl client
- alternate server settings 343
- API version 301
- API version, updating 314
- authCaptureSample.pl 303
- authSample.pl 303
code example. See sample code
configuration of cybs.ini file 309
configuring IP addresses for 305
creating requests, name-value pairs 321
creating requests, XML 332
debugging 310
decisions, name-value pairs 326
decisions, XML 338
enableLog 310
encoding. See character set support
ESYSTEM errors. See system errors
eexample code. See sample code
installation 306
interpreting replies, name-value pairs 324
interpreting replies, XML 336
keyFilename client configuration setting 309
keys. See transaction security keys
keysDirectory client configuration
setting 309
log file 310
logDirectory 310
logFilename 310
logMaximumSize 310
merchantID 309
merchants, configuring 309
multiple merchant IDs 344
namespace URI 309, 332, 343
production server URL 343
proxyPassword 311
proxyServer 311
proxyUsername 311
reason codes, name-value pairs 326
reason codes, XML 338
requesting multiple services, name-value
pairs 329
requesting multiple services, XML 341
retries. See system errors
return status values 316
REVIEW decision, name-value pairs 326, 328
REVIEW decision, XML 338, 340
sample code 302, 303
security keys. See transaction security keys
sending requests, name-value pairs 323
sending requests, XML 334
sendToProduction 309
server URL 309, 343
sslCertFile 310
system errors 330, 342
system requirements 305
target API version 301, 309
test server URL 343
testing the client 311
timeout 310
transaction security keys 306
updating API version 314
UTF-8 support. See character set support
XML schema 332
PHP client
alternate server settings 388
API version 346
API version, updating 359
authCaptureSample.php 348
authSample.php 348
da-bundle.crt 355, 363
code example. See sample code
configuration settings for name-value
pairs 367
correction settings for XML 379
correction with cybs.ini file 354
configured IP addresses for 350
creating requests, name-value pairs 367
creating requests, XML 377
debugging 355
decision, XML 383
decisions, name-value pairs 371
enableLog 355
encoding. See character set support
ESYSTEM errors. See system errors
eexample code. See sample code
installation 351
interpreting replies, name-value pairs 369
interpreting replies, XML 381
keyFilename client configuration 354
keys. See transaction security keys
keysDirectory client configuration 354
log file 355
logDirectory 355
logFilename 355
logMaximumSize 355
merchantID 354
merchants, configuring 354
multiple merchant IDs 389
namespace URI 354, 377, 379, 388
production server URL 388
proxyPassword 356
proxyServer 356
proxyUsername 356
reason codes, name-value pairs 371
reason codes, XML 383
requesting multiple services, name-value pairs 374
requesting multiple services, XML 386
retries. See system errors
return status values 362
REVIEW decision, name-value pairs 371, 373
REVIEW decision, XML 383, 385
sample code 347, 348, 356
security keys. See transaction security keys
sending requests, name-value pairs 368
sending requests, XML 379
sendToProduction 354
server URL 388
serverURL 354
sslCertFile 355
system errors 375, 387
system requirements 350
target API version 346, 354
test server URL 388
testing the client 356
timeout 355
transaction security keys 351
updating API version 359
UTF-8 support. See character set support
XML schema 377